Evaluation of the effectiveness of sedimentation-biofiltration sequential system in storm water treatment

Praca magisterska wykonana w Katedrze Ekologii Stosowanej UŁ pod kierunkiem dr. Tomasza Jurczaka

Łódź, 2015
Chciałbym serdecznie podziękować

Paniu dr. Tomaszowi Jurczakowi
za nieocenione wsparcie, dużą dozę wyrozumiałości oraz ogromne, osobiste zaangażowanie.

Paniu prof. dr. hab. Maciejowi Zalewskiemu
za umożliwienie mi zrealizowania pracy magisterskiej.

Paniu dr. Zbigniewowi Kaczkowskiemu
za wartościowe rozmowy podczas wyjazdów monitoringowych.

Paniu mgr. Kamilowi Dawidowiczowi
za pomoc w przeprowadzeniu badań terenowych.
Pracę magisterską wykonano w ramach realizacji projektu LIFE+
pt.: „Ekohydrologiczna rekultywacja zbiorników rekreacyjnych „Arturówek” (Łódź)
jako modelowe podejście do rekultywacji zbiorników miejskich”
(EH-REK) LIFE08 ENV/PL/000517.

Projekt finansowany z Unii Europejskiej oraz Narodowego i Wojewódzkiego Funduszu Ochrony
Środowiska i Gospodarki Wodnej.
SPIS TREŚCI

1. WSTĘP ... 5
 1.1. PROBLEMY Z JAKOŚCIĄ WÓD BURZOWYCH NA TERENACH ZURBANIZOWANYCH 5
 1.2. EKOHYDROLOGIA Jako NARZĘDZIE MOGĄCE SŁUŻyć PODNIESIENIU JAKOŚCI WODY W MIEŚCIE .. 7
 1.3. INNOWACYJNOŚĆ KONCEPCJI SEKWENCYJNEGO SYSTEMU SEDIMENTACYJNO-BIOFILTROCYJNEGO (SSSB) ... 8
 1.3.1. Podziemny system separatorów – budowa i zachodzące procesy ... 10
 1.3.2. Część sedymentacyjna SSSB – budowa i zachodzące procesy ... 11
 1.3.3. Część geochemiczna SSSB – budowa i zachodzące procesy ... 13
 1.3.4. Część biologiczna SSSB – budowa i zachodzące procesy ... 14
 1.4. CEL PRACY ... 15

2. TEREN BADAŃ ... 16
 2.1. CHARAKTERYSTYKA RZEKI BZURY I ZBIORNIKÓW W ARTUROWKU ... 16
 2.2. DZIĄLANIA PODjęTE W RAMACH PROJEKTU EH-REK ... 18
 2.3. CHARAKTERYSTYKA OBSZARU DEMONSTRACYJNEGO BADAŃ .. 19

3. MATERIAŁY I METODY ... 20
 3.1. PÓBÓR PROBÓK .. 20
 3.2. WARUNKI METEOROLOGICZNE ... 21
 3.3. ANALIZA PARAMETRÓW FIZYczNYCH .. 21
 3.4. ANALIZA PARAMETRÓW CHEMICZNYCH ... 22
 3.5. PROCENTOWE PRZYROSTY REDUKCJI POSZCZEGÓLNYCH BIOGENÓW ... 24

4. WYNIKI ... 25
 4.1. DYNAMIKA ZMIAN WARUNKÓW METEOROLOGICZNYCH W REJONIE SSSB W TRAKCIE SEZONU BADAWCZEGO 25
 4.2. DYNAMIKA ZMIAN PARAMETRÓW FIZYczNYCH WODY W SSSB .. 28
 4.2.1. Temperatura wody i zawartość tlenu ... 28
 4.2.2. Wartość pH i przewodnictwo elektrycznego .. 30
 4.2.3. Zawiesina .. 32
 4.3. DYNAMIKA ZMIAN PARAMETRÓW CHEMICZNYCH WODY W SSSB .. 33
 4.3.1. Formy całkowite azotu i fosforu ... 33
 4.3.2. Fosforany, azotany i amon ... 35
 4.3.3. Wapń, potas i sód .. 37
 4.3.4. Procentowe przyrosty skuteczności usuwania biogenów .. 39
 4.4. DYNAMIKA ROZWOJU ROŚLINNOŚCI W CZEŚCI BIOLOGICZNEJ SSSB .. 41

5. Dyskusja .. 44

6. Wnioski .. 55

7. STRESZCZENIE PRACY MAGISTERSKIEJ .. 56

8. LITERATURA ... 57
1. **WSTĘP**

1.1. Problemy z jakością wód burzowych na terenach zurbanizowanych

Na obszarach poza miejskimi, średnio 90% wody opadowej (w zależności od ukształtowania terenu, sposobu jego wykorzystania, budowy geologicznej i pokrycia roślinnością) uzupełnia bilans wodny danego obszaru i wraca do niego. Oznacza to, że woda, która spada na daną powierzchnię nie odpływa z niej bezpowrotnie, lecz krąży w zamkniętym cyklu wodnym (Wagner i inni, 2013). Dzieje się tak ze względu na możliwość parowania (ewapotranspirację), wsiąkania w grunt (infiltrację), zatrzymania na powierzchni roślin (intercepcję) i retencję glebową.

Proces ten wiąże się z wieloma konsekwencjami. Po pierwsze, często już kilkadziesiąt godzin po opadzie ma miejsce deficyt wody na danym obszarze. Jak podają Wagner i Krauze (2014), od 70 do 90% wody opadowej jest w miastach bezpowrotnie tracione. Prowadzi to do miejscowej suszy i może doprowadzić do obumarcia i tak już niewielkiej ilości rosnących w mieście roślin. Po drugie, intensywne spływy powierzchniowe prowadzi do zapchania i przeciążenia odbiorników wód burzowych (studzenek kanalizacyjnych), a w efekcie do lokalnych podtopień i powodzi (Podawca, 2012). Ich konsekwencją bywają natomiast znaczne straty materialne, a często także paraliż całych fragmentów miasta.

Dodatkowe zagrożenie stanowi fakt, że wody burzowe w miastach zawierają ogromne ilości zanieczyszczeń (Aryal i inni, 2010; Jurczak i inni 2012; Podawca 2012). Dzieje się tak, ponieważ wody
spływając z obszarów zurbanizowanych, zbierają z nich wszystkie nagromadzone tam wcześniej zanieczyszczenia. Docierając do studzienek kanalizacyjnych i dalej do zbiorników wodnych, wprowadzają do nich wszystko co spłukały płynąc po powierzchni gruntu. Po przepłynięciu przez ulice, parkingi, place zabaw, dachy bloków i inne obszary wewnątrz miasta, wody burzowe gromadzą z nich pyły, fragmenty materii organicznej, metale ciężkie, związki aromatyczne i szereg innych groźnych substancji (Aryal i inni, 2010). Wpływając do naturalnych cieków wodnych i śródmiejskich akwenów, powodują w nich znaczny wzrost trofii. Ten zaś z kolei sprzyja powstawaniu toksycznych, sinicowych zakwitów, które mają liczne negatywne konsekwencje dla środowiska naturalnego i lokalnej społeczności (Jurczak i inni, 2012).

![Cykl wodny w środowisku naturalnym](image1)

Proces postępującej urbanizacji będzie na każdym kroku stawiał przed społeczeństwem nowe wyzwania i zagrożenia – dotyczące między innymi jakości życia, zdrowia i bezpieczeństwa ekologicznego. Istotne staje się stosowanie innowacyjnych rozwiązań, pozwalających skutecznie zarządzać wodą i środowiskiem nie tylko dzięki wykorzystaniu wiedzy inżynieryjnej, ale również w oparciu o głębokie zrozumienie procesów biologicznych i hydrologicznych. Takie właśnie podejście i założenia prezentuje ekohydrologia (Zalewski, 2014a).

![Rys. 1. Porównanie cyklu hydrologicznego na obszarach zurbanizowanych i pozamiejskich (Wagner i inni, 2013).](image2)
1.2. Ekohydrologia jako narzędzie mogące służyć podniesieniu jakości wody w mieście

Ekohydrologia jest transdyscyplinarną nauką, która bada powiązania pomiędzy procesami hydrologicznymi – takimi jak infiltracja, opad, intercepcja, odpływ, czy parowanie, a biologicznymi – między innymi ewaporacją, biodegradacją, samooczyszczaniem, denitryfikacją, pętlą mikrobiologiczną (Zalewski i Wagner, 2004).

Celem ekohydrologii jest aby na podstawie zdobytej wiedzy uzyskać poprawę jakości wody, restytucję cyklu hydrologicznego, zwiększenie bioróżnorodności – w wyniku czego uda się podnieść pojemność środowiska (carrying capacity) na absorbowanie stresu antropogenicznego, co prowadzi m.in. do zrównoważonego rozwoju obszarów miejskich (Zalewski, 2014). Skuteczność wdrożonych rozwiązań w ogromnej mierze zależy od dogłębnego zrozumienia przyczyn problemów w danej zlewni i podjęciu równorzędnych działań rekultywacyjnych i ochronnych na bardzo wielu płaszczyznach.

Zrozumienie zasady działania i bilansu funkcjonowania danego ekosystemu, pozwala na wdrożenie rozwiązań ścisłe do niego dopasowanych. W przypadku zbiorników wodnych należy jednak mieć na uwadze, że każdy z nich charakteryzuje się odmiennymi zależnościami i dlatego przy doborze optymalnych metod należy kierować się działaniami ścisłe dopasowanymi do jego charakterystyki (Zalewski, 2002). Ważne jest jednak aby pamiętać, że w każdym przypadku należy być świadomym głębokich zależności istniejących pomiędzy elementami biotycznymi i hydrologicznymi danego obszaru.

Przykładem działań służących ochronie zbiorników wodnych może być tworzenie stref buforowych, budowa zbiorników wstępnych oraz tworzenie terenów rozlewiskowych, w których woda w sposób naturalny zasilałaby wody gruntowe. Jednakże tego typu systemy wymagają znacznej przestrzeni, której w ekosystemach miejskich brakuje. Problem ten rozwiązuje koncepcja ekohydrologii,
zakładająca integrację rozwiązań hydrotechnicznych i biologicznych. Doskonale wpasowane w krajobraz miejski rozwiązania nie szpecą go, a w wielu przypadkach nie zabierają cennej przestrzeni. Jest to możliwe dzięki wykorzystaniu istniejących zbiorników miejskich oraz funkcjonujących już systemów kanalizacyjnych odprowadzających wody burzowe (Zalewski i inni, 1997). Kluczową wydaje się konieczność integracji bardzo różnorodnych, interdyscyplinarnych sfer nauki, które współdziałając pozwolą na uzyskanie efektu synergii – wzajemnego wzmocnienia skutków podjętych działań.

Proponowane rozwiązania ekohydrologiczne, pozwalają na stworzenie lepszych warunków do życia w mieście, dzięki którym mieszkańcom zostanie zapewnione bezpieczeństwo ekologiczne – między innymi poprzez zwiększenie retencji wody na obszarach zurbanizowanych. Jest to możliwe dzięki odpowiednemu wyborowi mechanizmów kompensacji, opartych o ilościową analizę procesów hydrologicznych oraz poprzez możliwość kształtowania i modyfikacji cyklu hydrologicznego w obszarach silnie przekształconych przez człowieka.

Zgodnie z koncepcją ekohydrologii, naturalne właściwości ekosystemów powinny być wykorzystane jako narzędzie komplementarne dla inżynierskich rozwiązań służących zarządzaniu zasobami wodnymi. Takie podejście pozwoli podnieść skuteczność prowadzonych działań, przy jednoczesnym obniżeniu ich kosztów (Jurczak i inni, 2012a).

1.3. Innowacyjność koncepcji sekwencyjnego systemu sedymentacyjno-biofiltracyjnego (SSSB)

Jednym z rozwiązań biotechnologicznych wykorzystujących założenia koncepcji ekohydrologii jest Sekwencyjny System Sedymentacyjno-Biofiltracyjny (SSSB). W ramach projektu SWITCH na rzece Sokołówce skonstruowany został prototyp takiego systemu, a jego rolą było przejmowanie i podczyszczanie fali opadowej transportowanej systemem rzecznym (Wagner i Breil, 2013).

Rys. 2. Sekwencyjny System Sedymentacyjno-Biofiltracyjny na rzece Sokołówce (Wagner i Krauze, 2014)
Projekt systemu uwzględniał 3 strefy, w których miało miejsce retencjonowanie i oczyszczanie przepływającej wody – strefę intensywnej sedymencji, procesów geochemicznych i strefę biofiltracejną. Dzięki zastosowaniu systemu, w ciągu 2 lat po jego uruchomieniu udało się uzyskać skuteczność w usuwaniu fosforu i azotu całkowitego na poziomie 60% (Zalewski i inni, 2012).

W ramach projektu „Ekohydrologiczna rekultywacja zbiorników rekreacyjnych „Arturówek” (Łódź) jako modelowe podejście do rekultywacji zbiorników miejskich” zoptymalizowano ten system umożliwiając jednocześnie odprowadzanie wód deszczowych bezpośrednio z ulic. Dokonano tego między innymi poprzez konstrukcję dwukomorowej części osadnikowej i połączenie jej z podziemnym systemem separatorów i osadników (osadnik wirowy i separator lamelowy) służących podczyszczaniu i przejmowaniu wód deszczowych z powierzchni utwardzonych. Dzięki takiemu rozwiązaniu istnieje możliwość bezpośredniego odbierania wód opadowych, a następnie ich retencjonowania i podczyszczania.

Rys. 3. Schemat SSSB przy ulicy Wycieczkowej uwzględniający podział na elementy podziemne (oznaczone kolorem pomarańczowym) oraz powierzchniowe (oznaczone kolorem fioletowym).

Tego typu systemy zostały zastosowane w zlewni rzeki Bzury i na obszarze zbiorników rekreacyjnych w Arturówku w Łodzi jako rozwiązania demonstracyjne. Każde z rozwiązań dostosowane zostało do istniejącej infrastruktury odwadniającej tereny utwardzone miasta oraz do ilości zanieczyszczeń transportowanych do zbiorników ze zlewni bezpośredniej. W dalszej części pracy zostanie szczegółowo opisany system skonstruowany przy ulicy Wycieczkowej, służący przejmowaniu wód
burzowych z 2-3 ha powierzchni utwardzonych znajdujących się powyżej niego. Przed rozpoczęciem działań inwestycyjnych na terenie Arturówka, zanieczyszczona woda burzowa dostawała się bezpośrednio do rzeki Bzury i zbiorników rekreacyjnych (Ulężałka, 2011). Powodowało to wzrost trofi zbiorników, co w efekcie sprzyjało powstawaniu letnich zakwitów sinic (Tarczyńska i inni, 1997; Jurczak i inni, 2007). Innowacyjna konstrukcja SSSB, łącząca w sobie elementy podziemne i naziemne, miała na celu zatrzymanie i retencjonowanie wód burzowych spływających ulicą oraz ich wstępne podczyszczenie, polegające na eliminacji substancji ropopochodnych i zawiesiny w specjalnie przystosowanych do tego systemach podziemnych osadników i separatorów.

1.3.1. Podziemny system separatorów – budowa i zachodzące procesy

Istniejące obecnie w miastach systemy kanalizacyjne przechwytują wody burzowe z powierzchni utwardzonych i wprowadzają je bezpośrednio do rzek, kanałów, rowów i zbiorników wodnych bez wcześniejszego ich podczyszczenia. Taka sytuacja miała miejsce przy ulicy Wycieczkowej, gdzie wody deszczowe spływające ulicą zostawały wprowadzane bezpośrednio do rzeki Bzury. W ramach projektu EH-REK, na opisywanym obszarze zaplanowano rozbudowę istniejącego systemu odbiorników wód burzowych o system separatorów i osadników umieszczonych pod ziemią i służących wstępnemu podczyszczeniu wód burzowych. Tego typu rozwiązanie nie szpeci krajobrazu, nie zajmuje również cennego miejsca – co na obszarach wysoce zurbanizowanych jest ogromnym atutem (Jurczak i inni, 2012). Poszczególne elementy systemu wkopane są w grunt, a na powierzchni znajdują się włazy, za pomocą których można oceniać ich pracę i wykonywać czynności eksploatacyjne.

Woda burzowa zbierana jest z powierzchni ulicy Wycieczkowej przy pomocy czterech studzienek kanalizacyjnych, zlokalizowanych w kilkumetrowych odstępach po obu stronach drogi. Ich rolą jest przechwycenie maksymalnie dużej ilości spływu powierzchniowego, pojawiającego się tuż po obfitych opadach deszczu. Woda kierowana jest z nich bezpośrednio do studni połacinowej, która pełni również rolę wstępnej komory sedymencyjnej. Zasada działania tej części systemu opiera się na grawitacyjnym oddzieleniu wody i cząsteczek w niej zawieszonych dzięki spowolnieniu występującego przepływu. W tego typu zbiornikach najcięższa zawiesina (piasek, żwir) naturalnym ruchem opada na dno komory, a woda przepływa dalej (Fidala-Szope, 1997).

Ze względu na obficie gromadzącą się tu materię organiczną, niezbędne jest regularne opróżnianie tego elementu systemu – co pozwala na utrzymanie jego efektywności i wydajności na najwyższym poziomie, niezależnie od warunków pogodowych.
Przelana do drugiej komory woda pod wpływem siły ciężkości oraz specyficznej budowy osadnika wprawiana jest w ruch wirowy. Jest to możliwe dzięki odpowiedniemu ukształtowaniu komory oraz właściwemu nachyleniu rury wlotowej. Nie potrzeba do tego żadnego dodatkowego źródła energii, co pozwala w znacznym stopniu ograniczyć koszty inwestycji. Powstająca siła odśrodkowa oddziela wodę od cięższych fragmentów organicznych, które sedymentują na dnie osadnika i nie przedostają się dalej.

Trzeci podziemny zbiornik, to tzw. separator lamelowy (koalescencyjny). Wpadająca tu woda ulega oczyszczению również dzięki procesowi sedymentacji, a dodatkowo przepływając przez specjalny filtr zatrzymuje substancje ropopochodne, którymi zanieczyszczane są ulice przez poruszające się pojazdy silnikowe.

Po wstępnym podczyszczaniu w opisanym powyżej systemie podziemnych separatorów i osadników, woda burzowa przedostaje się systemem rur do SSSB pełniącego funkcję m.in. zbiornika retencyjnego. Składa się on z trzech elementów: części osadnikowej, geochemicznej i biologicznej, które doczyszczają wodę przed wprowadzeniem jej do rzeki.

1.3.2. Część sedymentacyjna SSSB – budowa i zachodzące procesy

SSSB to niewielki i stosunkowo płytki zbiornik łączący system odprowadzania wód burzowych z ulicy z naturalnym systemem rzecznym. Rozmiar tej części zależy od wielkości zlewni oraz ilości przejmowanej wody i najczęściej na obszarach miejskich nie powinien przekraczać 500-700 m². Czas retencji wody w systemie zależy od intensywności opadu i może ważyć się od kilkudziesięciu minut (przy bardzo intensywnym opadzie deszczu), nawet do kilkudziesięciu dni w okresach suszy.

Część sedymentacyjna SSSB zlokalizowanego poniżej ulicy Wycieczkowej, która jest pierwszym elementem systemu, jest znacznie płytsza niż większość powszechnie stosowanych zbiorników sedymentacyjnych – posiada bowiem jedynie 50-70 cm głębokości. Jak podaje literatura (Putz, 1995), typowy zbiornik sedymentacyjny charakteryzuje się głębokością około 1,5 m.

Jak wskazuje nazwa tej części SSSB, głównym procesem zachodzącym na tym obszarze jest sedymentacja (Hurley i Forman, 2011). Woda zwalnia tu swój bieg, w wyniku czego pod wpływem siły grawitacji duże i ciężkie cząsteczki ulegają wytrącaniu i opadają na dno (Benndorf i Putz, 1987). Intensywność zachodzącego procesu jest zależna od czasu retencji stagnującej na tym obszarze wody (Fiala i Vasata, 1982). Poprzez oddziaływania siły ciężkości duże cząsteczki materii opadają na dno zbiornika, skąd mogą zostać mechanicznie wybrane i usunięte (Putz i Benndorf, 1998).
Jak podaje literatura (Wagner i Loy, 2002), do zbiornika sedymentacyjnego można dodatkowo dodawać bakterie, które poprzez swoje procesy fizjologiczne przyspieszają mineralizację osadu. W przypadku omawianego tu zbiornika wykorzystanie tej metody nie było stosowane.

Ze względu na fakt, że według literatury skuteczność działania zbiornika sedymentacyjnego nie jest wystarczająca, aby w pełni oczyścić przepływającą wodę zastosowano w tej części dodatkową barierę w postaci metalowej kraty, okrytej specjalną włókniną. Dzięki temu rozwiązaniu większe fragmenty materii organicznej (liście, gałęzie, itp.) ulegają na niej zatrzymaniu. Jedynie mniejsze, które nie przekraczają wielkością średnicy oka siatki, przedostają się dalej. Przegroda ta dodatkowo spowalnia bieg wody, powodując jej stagnowanie i wydłużając czas retencji.

Zastosowana w tym celu włóknina wykonana została specjalnie na potrzeby projektu EH-REK, przez pracowników Politechniki Łódzkiej. Do jej produkcji wykorzystano trzy urządzenia: zgrzeblarkę laboratoryjną walkową firmy Befama (umożliwiającą formowanie włókien o wzdłużnym ułożeniu włókien), igłowarkę firmy Befama (odpowiadającą za igłowanie wstępne) oraz igłowarkę Heurer (igłowanie zasadnicze). Aby uformować runo, użyto klasycznej techniki włókninowej, w której wykorzystuje się cięte włókna z biodegradowalnego tworzywa PLA (systemem zgrzeblarkowym). Do wytwarzania włóknin użyto materiału o masie liniowej 6,84 den, wytrzymałości 3,8 cN/tex i wydłużeniu względzonym 48%. Maszyna była zasilana 30g włókna/pole szczelnika, a formowane runka elementarne posiadały masę 9,8 g/m². Runka elementarne podlegały składaniu, uzyskując masę powierzchniową bliską 200 g/m². Aby uzyskać włókninę ostateczną, połączono trzy warstwy runek elementarnych. Włókna w runie były łączone techniką igłowania. Stosowano specjalistyczne uigłowanie, a liczba przeigłowań wstępnych wynosiła 30/cm². Igłowanie zasadnicze prowadzone było w liczbie 50/cm², a jego głębokość była równa 8 mm. Dodatkowo jednostronnie przeigłowano warstwę włókniny typu spunbound o powierzchniowej masie 50 g/m². Wstępne badania wykazały na tym materiale redukcję stężeń zawiesiny o około 13%.

Szczegółowe badania potwierdzają, iż włóknina zainstalowana na kracie przez cały sezon badawczy oprócz zwiększenia skuteczności sedymentacji zanieczyszczeń w części osadnikowej SSSB skutecznie akumuluje również na swojej powierzchni różnego rodzaju biogeny. Wstępne analizy wykazują, że 1m² geowłókniny po roku funkcjonowania na obszarze SSSB zawiera około 140 mg związków fosforu oraz około 580 mg azotu azotanowego. W stanie fabrycznej nowości, ten sam materiał posiada w swoim składzie poniżej 60 mg związków fosforu na każdy metr kwadratowy, natomiast azot nie występuje w nim w ogóle.
1.3.3. Część geochemiczna SSSB – budowa i zachodzące procesy

Kolejnym elementem Sekwencyjnego Systemu Sedymentacyjno-Biofiltracyjnego znajdującego się w Arturówku, jest jego część geochemiczna, dzieląca część sedymentacyjną SSSB od części biologicznej. Ten element systemu skonstruowany jest z koszy metalowych w których umieszczony jest kamienny materiał dolomitowo-wapienny o wielkości 10-20 cm. Jest to tzw. gabion stosowany powszechnie również w budownictwie. Całość okryta jest matą kokosową, która zapobiega kolmatacji złoża. Woda wstępnie przefiltrowana przez przegrodę zaopatrzoną w opisaną wcześniej geowłókninę, dostaje się do części gabionowej SSSB.

Spływająca z ulicy Wycieczkowej woda posiada stosunkowo niskie pH oraz często zawiera zawiesinę, na co wskazują wysokie stężenia form całkowitych azotu i fosforu (Podawca, 2012). Jak potwierdzają badania (Stout i inni, 2000; Lee i inni, 2011; Mant i inni, 2013;), kontakt takiej cieczy z wapniem (Ca) może spowodować przekształcenie form fosforu łatwo rozpuszczalnego w wodzie, w formy gorzej rozpuszczalne, które nie będą tak mobilne i nie będą rozprzestrzeniać się w zbiorniku. skały które zawierają ten pierwiastek w znacznych ilościach, to między innymi wapień, dolomit i gips. W opisywanym systemie w części geochemicznej wykorzystano dwa pierwsze z nich. Ze względu na mocno zasadowy charakter, zarówno dolomit jak i wapień, są dodatkowo w stanie w niezwykle wydajny sposób podwyższać panujące w wodzie pH (Lee i inni, 2011).

Duża porowatość tego typu skał powoduje, że w stosunku do objętości, ich powierzchnia kontaktu z wodą jest bardzo duża. Dzięki temu ich działanie jest bardzo wydajne i efektywne. Duża ilość zawiesiny znajdującej się w wodzie może jednak sprawić, że wolne przestrzenie w ułożonym materiale skalnym mogą zostać zatkane, a poziom ich skuteczności w związku z tym może ulec drastycznemu obniżeniu (Burszta-Adamiak, 2007). Aby uchronić dolomity i wapienie tworzące geochemiczną barierę w SSSB przed tego typu kolmatacją, wał utworzony z głazów został okryty matą kokosową, której rolą jest wychwytywanie i blokowanie zawiesiny zanim dojdzie do zatkania złoża (Burszta-Adamiak, 2007). Istotne jest jej regularne wymienianie, co przy zachowaniu niewielkich kosztów pozwala utrzymać wydajność funkcjonowania bariery na najwyższym z możliwych poziomów. Mata ta pełni dodatkowo rolę podłoża umożliwiającego rozwój roślinności wodnej.
1.3.4. Część biologiczna SSSB – budowa i zachodzące procesy

Część biologiczna SSSB w Arturówku jest jego ostatnim, bardzo istotnym elementem. Trafiająca tu woda jest już wstępnie podczyszczona, przeszła przez podziemny system osadników, strefę sedymentacji oraz część geochemiczną.

Rolą roślin znajdujących się w tej strefie jest poprawianie jakości wody przepływającej przez ich system korzeniowy (Tanner, 1996). Roślinność pobiera wraz z wodą znaczné ilości biogenów oraz akumuluje je w swoich tkankach (fitoekstrakcja i fitoakumulacja). Dzięki temu następuje również proces fitodegradacji, polegający na likwidacji zanieczyszczeń organicznych (już po ich pobraniu i wbudowaniu w tkanki) poprzez liczne procesy metaboliczne występujące w roślinie (Stewart i inni, 2008). Czynność ta wspierana jest przez mikroorganizmy zamieszkujące strefę korzeniową rośliny (ryzodegradacja). Sama obecność roślin powoduje natomiast spowolnienie przepływu wody, a w związku z tym pozwala unieruchomić zanieczyszczenia, które nie zostały usunięte w poprzednich częściach SSSB (fitostabilizacja).

Tego typu nasadzenia umożliwiają odnowę ekosystemu wodnego oraz przywrócenie danemu obszarowi cech obszaru niezdegradowanego (Zalewski, 2002). Kluczowym jest, aby do konkretnego obszaru dobrać ściśle dopasowane do niego gatunki roślin, które w odpowiedni sposób wpływają na parametry fizykochemiczne przepływającej w danym miejscu wody. Jedynie znając pełną charakterystykę danego terenu możliwy jest wybór roślin, które spełnią swoją rolę w sposób najbardziej wydajny i skuteczny (Maine i inni, 2009).

W przypadku sekwencyjnego systemu sedymentacyjno-biofiltracyjnego w Arturówku, wydzielony fragment zbiornika będący częścią biologiczną pokryty został wieloma gatunkami roślin w celu maksymalizacji osiąganej skuteczności. Zaden z nich nie jest gatunkiem podlegającym ochronie, ani też gatunkiem inwazyjnym; wszystkie one są gatunkами rodzimymi (Wniosek Projektu EH-REK, 2008).

Są to między innymi: trzcina pospolita, turzyca brzegowa, manna mielec. Część z nich znajduje się w strefie brzegowej zbiornika, a część znajduje się w części otwartej zbiornika. Ponadto zainstalowana przy ujściu wody z części biologicznej SSSB wyspa płynąca doczyszczająca odpływającą wodę poprzez system korzeniowy porastających ją roślin. Dzięki faktowi, że unoszeni się ona na powierzchni, skuteczność pracy systemu ulega zwiększeniu niezależnie od poziomu lustra wody.
1.4. Cel pracy

Celem pracy jest ocena skuteczności działania modelowego sekwencyjnego systemu sedymentacyjno-biofiltracyjnego na przykładzie systemu skonstruowanego na rzece Bzurze poniżej ulicy Wycieczkowej oraz określenie wpływu intensywności opadów deszczu na efektywność i wydajność pracy całego układu.

Niniejsza praca pozwoli scharakteryzować funkcjonowanie sekwencyjnego systemu sedymentacyjno-filtracyjnego w różnych warunkach pogodowych – zarówno w czasie wzmożonego dopływu wód burzowych, jak i w okresie suchym. Zwróci uwagę na ewentualne problemy, zagrożenia i wyzwania, które mogą pojawić się w związku z funkcjonowaniem SSSB. Innowacyjne rozwiązania wykorzystane przy projektowaniu systemu zostaną sprawdzone na obszarze przyrodniczo cennym (las), przy niewielkich możliwościach przestrzennych oraz ograniczonym procesie samooczyszczania (ze względu na ograniczony przez drzewa dostęp światła).
2. TEREN BADAŃ

Rolą sekwencyjnego systemu sedymentacyjno-biofiltracyjnego skonstruowanego w tym miejscu jest retencjonowanie wód burzowych i ich podczyszczenie przed skierowaniem do systemu rzecznego i dalej do zbiorników wodnych, będących w obszarze miejskim typowym odbieralnikiem wód deszczowych.

2.1. Charakterystyka rzeki Bzury i zbiorników w Arturówku

zbiorników wodnych Arturówek (Bald i inni, 1999). Ze względu na malowniczy charakter, na ich terenie utworzono największą w Łodzi bazę rekreacyjno-wypoczynkową z przystanią kajakarską, która w sezonie odwiedzana jest przez rzesze turystów. Poniżej ulicy Łagiewnickiej rzeka zmienia bieg na północny (Bonisławski, 2008).

Rys. 4. – Położenie SSSB względem biegu rzeki Bzury, kaskady zbiorników w Arturóweku i ulicy Wycieczkowej. Na rysunku uwzględniono lokalizację pozostałych zadań realizowanych w ramach projektu EH-REK. (opracowanie własne)

Wykorzystując systemy piętrzące (żelbetowe jazy) na Bzurze w sposób sztuczny utworzono kompleks trzech zbiorników wodnych, nazywany Arturówekiem. Składają się na niego:

- Arturówek Górný (AG) – zbiornik zasilany wodami rzeki Bzury, w tym również wodami opadowymi z ulicy Wycieczkowej
- Arturówek Środkowy (AŚ) – zbiornik znajdujący się pomiędzy stawem górnym a dolnym
- Arturówek Dolny (AD) – zbiornik wysunięty najbardziej na zachód, pełni funkcję kąpieliskową

Wszystkie trzy zbiorniki pozostają we władaniu Urzędu Miasta Łodzi, zarządzane są natomiast przez Miejski Ośrodek Rekreacji i Sportu oraz Lasy Miejskie. Dla mieszkańców Łodzi pełnią głównie funkcję rekreacyjno-wypoczynkową (Jurczak i inni, 2012). Latem kąpią się tu dzieci i dorośli, istnieje również możliwość wypożyczenia sprzętu wodnego. Na niektórych fragmentach kaskady zbiorników (AG)
można spotkać wędkarzy. Brzegi zbiorników posiadają umocnienia z betonowych płyt, ograniczające osuwanie się ziemi.

Arturówek Górny (AG) jest akwenem najpłytszym (0,93 m), o powierzchni 1,08 ha i pojemności szacowanej na około 10 tys. m³ (Projekt generalny rzeki Bzury, 2003). Zbiornik jest chętnie odwiedzany przez wędkarzy, ponieważ każdego roku jest on zarybiany przez Polski Związek Wędkarski (Jurczak i inni, 2012). Jest to pierwszy zbiornik w kaskadzie akwenów zasilany wodami rzeki Bzury i wodami opadowymi z ulicy Wycieczkowej.

Arturówek Środkowy (AŚ) pełni funkcję rekreacyjną – przeznaczony jest w głównej mierze do uprawiania sportów wodnych. Na jego brzegu zlokalizowana jest wypożyczalnia rowerów wodnych, kajaków i łódek. Powierzchnia akwenu określana jest na 2,58 ha, jego pojemność to prawie 35 tys. m³, a średnia głębokość szacowana jest na około 1,35 m. Na zbiorniku tym we wschodniej części znajduje się niewielka wyspa (0,03 ha), która jest ostoją dla ptactwa wodnego (Projekt generalny rzeki Bzury, 2003).

Arturówek Dolny (AD) o powierzchni 3,05 ha i pojemności prawie 41 tys. m³ jest największym z tych trzech zbiorników. Średnia głębokość wynosi w nim 1,33 m (Projekt generalny rzeki Bzury, 2003). Publiczna plaża znajdująca się na jego południowym brzegu przyciąga rzesze mieszkańców Łodzi, którzy opalają się tu i kąpią. Nad ich bezpieczeństwem czuwają ratownicy, którzy latem patrolują zbiornik w łódkach. Znaczna ilość odwiedzających przekłada się prawdopodobnie na wzmożone obciążenie zbiornika biogenami.

2.2. Działania podjęte w ramach projektu EH-REK na terenie Arturówka

W ramach projektu w latach 2010-2011 realizowane były prace mające na celu określenie bilansu dopływu i odpływu zanieczyszczeń z biefikacji potencjalnych źródeł zanieczyszczeń dla tych akwenów. W roku 2012 wykonano projekty techniczne, uzyskano niezbędne zgody i pozwolenia oraz opracowano koncepcję rekultywacji zbiorników. W pierwszej połowie roku 2013 zrealizowano prace inwestycyjne na które składało się pięć zadań:
ZADANIE 1. Konstrukcja roślinnych stref buforowych i mat roślinności płynącej na trzech zbiornikach w Arturówku (AG, AŚ, AD)

ZADANIE 2. Adaptacja ekohydrologiczna czaszy zbiornika górnego (AG) w Arturówku

ZADANIE 3. Konstrukcja sekwencyjnego systemu sedymentacyjno-biofiltracyjnego (SSSB) do retencjonowania i podczyszczenia wód opadowych z ulicy Wycieczkowej

ZADANIE 4. Adaptacja ekohydrologiczna dwóch zbiorników (Bzura-7 i Bzura-17) zlokalizowanych w górnym odcinku rzeki Bzury powyżej ulicy Wycieczkowej

ZADANIE 5. Usuwanie osadów dennych z trzech zbiorników w Arturówku (AG, AŚ, AD)

W roku 2014 wykonano optymalizację zrealizowanych inwestycji oraz ocenę ich skuteczności.

2.3. Charakterystyka obszaru demonstracyjnego badań

Sekwencyjny system sedymentacyjno biofiltracyjny opisywany szczegółowo w rozdziale 1.3. niniejszej pracy zlokalizowany jest tuż poniżej ulicy Wycieczkowej. Ulica Wycieczkowa ma długość około 5,4 km. Zaczyna się przy skrzyżowaniu z ulicą Strykowską, kończy się natomiast wlotem w ulicę Okólną.

W czasie opadu deszczu, wody burzowe spływają po jej powierzchni oraz terenach do niej przylegających (trasa rowerowa, parking, wjazdy do posesji itp.) splukując z drogi zanieczyszczenia, które następnie prowadzane są bezpośrednio do SSSB. Powierzchnia ulicy Wycieczkowej na całej długości pokryta jest bitumitem. Droga uczęszczana jest zarówno przez samochody osobowe, autobusy (linie 51, 51A i 51B), a także pojazdy uprzywilejowane (w pobliżu usytuowany jest szpital). Wzdłuż ulicy ciągnie się dodatkowo droga rowerowa – której powierzchnia jest również w całości utwardzona. Wielkość powierzchni utwardzonej, z której wody spływają do SSSB, wynosi około 2-3 ha.
3. MATERIAŁY I METODY

3.1. Pobór próbek

Próbki wody pobierane były z wyznaczonych ośmiu stanowisk, zaznaczonych i nazwanych na rysunku numer 5.

W dalszej części pracy poszczególnym stanowiskom poboru próbek przyporządkowano odpowiadające im numery, którymi posługiwano się na osiach prezentowanych wykresów.

Stanowiska o numerach 1-6 wykorzystane zostały do oceny skuteczności pracy SSSB w oczyszczaniu wód deszczowych przejmowanych z ulicy Wycieczkowej. Stanowiska numer 7 i 8 posłużyły natomiast jako punkty referencyjne, pozwalające porównać jakość wody oczyszczonej przez SSSB, z jakością wody występującą naturalnie w Bzurze.
Na stanowisku numer jeden woda pojawiała się wyłącznie w czasie ulewnych deszczu – kiedy to płynęła bezpośrednio ulicą Wycieczkową – i jedynie wtedy była z tego punktu pobierana. Takie przypadki miały miejsce w następujących dniach prowadzonych badań: 08 kwietnia, 10 kwietnia, 26 kwietnia, 09 maja, 16 maja, 17 maja, 23 lipca i 07 listopada 2014 roku. W inne dni próbki pobierane były z pozostałych siedmiu stanowisk.

Dnia 25 marca, 22 kwietnia, 06 i 20 maja, 28 sierpnia oraz 09 października również pojawiały się opady deszczu, jednak ze względu na ich charakter (niewielka intensywność/krótki czas trwania) woda nie płynęła ulicą Wycieczkową i nie było możliwe jej zebranie. Dnia 22 kwietnia miał miejsce bardzo intensywny opad deszczu (18 mm/godzinę), jednak z uwagi na jego krótki charakter nie udało się zebrać próbki z ulicy.

W dniu 8 kwietnia, ze względu na prowadzone działania eksploatacyjne na zbiorniku, konieczne było spuszczenie wody z systemu, co uniemożliwiło pobór próbek i pomiar podstawowych parametrów wody.

3.2. Warunki meteorologiczne

Dane na temat warunków pogodowych (temperatura, poziom opadów, zachmurzenie, ciśnienie, siła wiatru) pozyskiwane były każdorazowo w dniu poboru próbek z numerycznej prognozy pogody (http://new.meteo.pl), opracowywanej przez Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego (ICM). Wartość ewentualnych opadów podawana jest w całej pracy w milimetrach na godzinę.

3.3. Analiza parametrów fizycznych

Pomiar parametrów fizycznych wody dokonywany był bezpośrednio w terenie. Do tego celu używano każdorazowo wielofunkcyjnego miernika WTW – modelu Multi 340i. Mierzono wartość pH, przewodnictwa, stężenie tlenu i temperaturę. Sprawdzano również, czy ze względu na dużą ilość rozpuszczonej w wodzie materii nie pojawia się ewentualne zasolenie. Pomiarów dokonywano zgodnie z instrukcją dołączoną do urządzenia, a po każdym pomiarze sondy przeplukiwano przy użyciu wody destylowanej.
3.4. Analiza parametrów chemicznych

W celu zbadania wydajności i poziomu skuteczności oczyszczania wody przez sekwencyjny system sedymentacyjno-filtracyjny oznaczano wybrane parametry chemiczne wody, między innymi formy całkowite azotu i fosforu. Pobrane próbki wody przebadano również pod kątem obecności innych jonów w nich zawartych.

W celu oznaczenia stężenia fosforu całkowitego posłużono się zmodyfikowaną metodą z kwasem askorbinowym (zgodnie z metodyką PN 88/C 04537.04).

W toku prowadzonych prac przeprowadzono również analizę ilościową i jakościową jonów zawartych w wodzie. Pozwoliła ona oszacować jak zmieniają się stężenia poszczególnych form substancji biogenicznych w różnych częściach SSSB. W celu dokonania analizy posłużono się metodą wysokosprawnej chromatografii jonowej (HPIC).

Wykorzystany w tym celu chromatograf jonowy (Dionex ICS-1000) składał się z dwóch układów – osobnych dla anionów i osobnych dla kationów. Każdy z nich złożony był z systemu gromadzenia danych, naczynka konduktometrycznego, supresora chemicznego stabilizującego linię bazową (CSRS – ULTRA II dla kationów i ASRS – ULTRA II dla anionów), wypełnionej żywicą kolumny separacyjnej (2x250 mm)(IonPac CS18 dla kationów i IonPac AS18 dla anionów), kolumny ochronnej (2x50mm)(CG18 dla kationów, AG18 dla anionów), eluentu i wysokociśnieniowej pompy.

Eluent dla analizy kationów stanowił 16 mM kwas metanosulfonowy (wyprodukowany przez firmę Fluka), natomiast do analizy anionów wykorzystano mieszaninę 4,5 mM węglanu sodu i 1,4 mM dwuwęglanu sodu przygotowaną z koncentratu Dionex AS22. Zarówno w pierwszym, jak i w drugim systemie zastosowano elucję izokratyczną w temperaturze 30°C, przy przepływie 1 ml/min. W celu oznaczenia jonów wykorzystano pętlę 25 µl.

Aniony i kationy identyfikowane były w wodzie przy wykorzystaniu standardu 7 anionów i 6 kationów firmy Dionex. Następnie (wykorzystując program Chromeleon) w oparciu o powierzchnię pików dokonano ilościowego ich oznaczenia.
Ze względu na fakt, że oznaczanie form całkowitych azotu i fosforu było dokonywane w terminie późniejszym, próbki zamrażano w pojemnikach (o pojemności 50 ml) do czasu przeprowadzenia ich analizy.

Wszystkie próbki służące oznaczeniu form jonowych przed zamrożeniem zostały przefiltrowane przez sączki GF/C Whatmann.

Próbki do badań w terenie pobierane były pod opieką mgr. Kamila Dawidowicza, a ich analizy wykonywane były w Europejskim Regionalnym Centrum Ekohydrologii w Łodzi przez panią mgr Edytę Cichowicz.
3.5. Procentowe przyrosty redukcji poszczególnych biogenów

W celu określenia procentowych przyrostów skuteczności redukcji poszczególnych biogenów, porównano ich stężenia na analizowanych stanowiskach ze stężeniem tych samych substancji na stanowisku początkowym.

Powyższa metoda może być opisana przez następujący wzór:

\[R = 100 - \frac{S_2}{S_1} \times 100\% \]

Gdzie:

- \(R \) – przyrost skuteczności redukcji stężenia analizowanego związku
- \(S_2 \) – stężenie analizowanego związku na danym stanowisku
- \(S_1 \) – stężenie analizowanego związku na stanowisku początkowym

Aby określić wpływ opadu atmosferycznego na skuteczność redukcji poszczególnych stężeń, oprócz średnich wartości ze wszystkich wyjazdów monitoringowych (w tabeli 3. kolumna: średnio), uwzględniono dodatkowo podział na próbki z dni z opadem (w tabeli 3. kolumna: deszcz) oraz próbki z dni bez opadu (w tabeli 3. kolumna: sucho).

Do przeprowadzenia powyższych obliczeń, za początkowe stanowisko w przypadku analizy próbek z ogółu wyjazdów monitoringowych oraz z wyjazdów monitoringowych z dni z opadem deszczu, przyjęto stanowisko numer 1 – ulica Wycieczkowa (kratka). W przypadku analizy danych z dni bez opadu, za stanowisko w stosunku do którego określa się poziom skuteczności redukcji przyjęto stanowisko numer 2 – czyli separator (ulicą Wycieczkową w dni suche nie płynęła woda). Warto tu również zauważyć, że w dni suche nie badano parametrów wody na stanowisku numer 3 (wlot do zbiornika), ponieważ rurą odprowadzającą wodę z podziemnych zbiorników nie płynęła wtedy woda.
4. WYNIKI

4.1. Dynamika zmian warunków meteorologicznych w rejonie SSSB w trakcie sezonu badawczego

W tabeli 1 zaprezentowano dane dotyczące sumy rocznych opadów w Polsce dla poszczególnych lat. Tabela przedstawia również częstotliwość pojawiania się w ciągu roku opadów o konkretnej intensywności.

Tabela 1. Tabela prezentująca sumy rocznych opadów w poszczególnych latach na terenie Polski (Kardel i Piniewski, 2015).

<table>
<thead>
<tr>
<th>Rok</th>
<th>Częstość opadów dobowych większych od:</th>
<th>Suma roczna opadu (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>5mm</td>
<td>>10m</td>
</tr>
<tr>
<td>2008</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>2009</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>2010</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>2011</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>2012</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>2013</td>
<td>42</td>
<td>23</td>
</tr>
<tr>
<td>2014</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td>Średnia</td>
<td>34</td>
<td>15</td>
</tr>
</tbody>
</table>

Na podstawie zaprezentowanych danych można przyjąć, że w powyższym przedziale czasowym za rok suchy należy uznać rok 2011, natomiast za okres wilgotny rok 2013, w którym roczna suma opadów wynosiła aż 748,3 mm. Badania i wyjazdy monitoringowe prowadzone w ramach niniejszej pracy miały miejsce w roku 2014, w którym roczna suma opadów wyniosła 618,5 mm.

Ze względu na możliwe różnice w funkcjonowaniu SSSB w czasie dni deszczowych i bezdeszczowych, wyniki w niniejszej pracy prezentowane będą dla trzech okresów: bezdeszczowego, deszczowego oraz dla całego roku (czyli z próbek ze wszystkich wyjazdów monitoringowych).

W tabeli poniżej zaprezentowano podstawowe parametry meteorologiczne panujące na danym obszarze w dniach poboru próbek.

Za dni deszczowe w poniższej pracy uznano te, w których opad był na tyle intensywny, że powodował na ulicy Wycieczkowej powstawanie spływu powierzchniowego. Spośród 25 dni monitoringowych zaprezentowanych w tabeli 2., jedynie 8 uznano za dni deszczowe i oznaczono je kolorem szarym. Kolorem białym wyróżniono natomiast te wyjazdy monitoringowe, w których nie padał deszcz, bądź
Ocenięc więkość opadu brano pod uwagę nie tylko jego intensywność, ale również czas trwania. Opad o intensywności 3 mm/h trwający 3 godziny dostarczał do SSSB taką samą ilość zanieczyszczonej wody, co opad o intensywności 9 mm/h trwający godzinę.

Najwyższy opad odnotowano 22 kwietnia i wynosił on 18 mm/h. Trwał on jednak na tyle krótko, że woda bardzo szybko została odprowadzona z ulicy. W związku z powyższym to zdarzenie zakwalifikowano jako monitoring pory suchej. Spośród wyjazdów monitoringowych w okresach mokrych, najwyższe zanotowane wartości słupa wody wynosiły 8 mm/h i przypadały one na dni 10 kwietnia i 17 maja 2014 r.
4.2. Dynamika zmian parametrów fizycznych wody w SSSB

4.2.1. Temperatura wody i zawartość tlenu

Średnia temperatura wody, uwzględniająca próbki pobrane ze wszystkich dni pomiarów, waha się w zależności od stanowiska od 12,6°C do 14,8°C. Najwyższą wartość przyjmowała na stanowisku 3. – przy wlocie do SSSB. Jej najniższą wartość była obserwowana powyżej przegrody (stanowisko 4.) oraz między przegrodą, a gabionem (stanowisko 5.). Średnia temperatura wody po przejściu przez cały system (część biologiczna SSSB – 13,9°C) jest tylko nieznacznie wyższa, niż w rzece płynącej obok (Bzura poniżej Wycieczkowej – 13,1°C).

Rys. 6. – Zdjęcie przedstawia SSSB w okresie letnim (fot. T. Jurczak). Wykresy prezentują zmiany temperatury wody i zawartości tlenu na przestrzeni: A – całego okresu badań; B – w okresach deszczowych; C – w okresach bezdeszczowych.

Analizując próbki z całego okresu badań pod kątem różnic w stężeniach tlenu widać wyraźnie, że największy spadek tego parametru występuje pomiędzy stanowiskiem 3. i 5. Jego stężenie ulega tam obniżeniu z poziomu bliskiego 9 mg/l do około 4,5 mg/l. W ostatniej części SSSB ponownie zaś wzrasta i osiąga wartość o 0,3 mg/l wyższą, od średniej wartości tego parametru w Bzurze (6,8 mg/l na stanowisku 8.).
W próbkach z okresów deszczowych, maksymalne stężenie tlenu występowało w próbkach pobranych z ulicy Wycieczkowej (stanowisko 1.) i wynosiło tam około 9,1 mg/l. W kolejnych częściach SSSB jego wartość nie ulegała znacznym wahaniom (maksymalne różnice dochodziły do 2 mg/l). W okresach deszczowych stężenie tlenu w części biologicznej systemu było bardzo zbliżone, do stężenia występującego w tym samym czasie w rzece (8,2 mg/l stanowisko 6. oraz 8,1 mg/l stanowisko 8.). Wartym zauważenia wydaje się fakt, że w okresach deszczowych temperatura wody w poszczególnych częściach SSSB podlegała podobnym zmianom, jak dla średniej wyliczonej ze wszystkich pomiarów monitoringowych. Najwyższa jej wartość była obserwowana na stanowisku 3. (14,6°C), a najniższa na stanowiskach 4. i 5. (około 12,6°C).

Analizując przebieg wykresu średniej temperatury wody dla próbek z okresu bezdeszczowego, wyraźnie widać, że w tym przypadku maksimum przypada na stanowisko 2. – separator podziemny, w którym to woda osiąga temperaturę 16,4°C. Następnie po przejściu do części sedymentacyjnej (powyżej przegrody – 4.) ulega ona ochłodzeniu, do średniej wartości bliskiej 12,8°C. W części biologicznej systemu jej wartość ponownie jednak wzrasta, do poziomu wyraźnie wyższego, niż w Bzurze poniżej ulicy Wycieczkowej (na stanowisku 6. wynosi ona 14,0°C, natomiast na 8. około 13,0°C). W próbkach z okresu bezdeszczowego, stężenia tlenu są wyraźnie niższe, niż w próbkach pobranych w dni deszczowe. Minimalna zawartość tlenu była odnotowywana na stanowisku mieszczącym się między przegrodą, a gabionem (stanowisko 5.) i wynosiła tam średnio około 12,6°C.

W części końcowej systemu stężenie tlenu w próbkach z okresu suchego ponownie wzrasta i osiąga na stanowisku 6. (część biologiczna) wartość równą wartości w rzece (około 6,3 mg/l).
4.2.2. Wartość pH i przewodnictwa elektrycznego

Zebrane wyniki dotyczące wartości pH i przewodnictwa elektrycznego pokazują, że dynamiki ich zmian są w dość niewielkim stopniu powiązane z opadem deszczu i charakteryzujące je wykresy kształtują się w dość zbliżony sposób w obu przypadkach.

Średnie wartości pH na przestrzeni całego okresu badań dochodzą do około 7,7 – odczyn wody jest więc obojętny/delikatnie zasadowy. Maksymalne wartości przyjmuje ono w okolicy stanowiska 3. – czyli wlotu do zbiornika, zaś najniższe pomiędzy przegrodą, a gabionem (stanowisko 5.), jednak nie odbiega ono znacznie od pozostałych wyników i wynosi 7,4. W ostatnim elemencie SSSB (część biologiczna, stanowisko 6.) pH wody kształtuję się na poziomie 7,7. W tym samym czasie w Bzurze wynosi ono około 7,5 (stanowisko 8.). Średnia wartość pH dla próbek z okresów bezdeszczowych różni się nieznacznie od wartości próbek z tych samych stanowisk z okresów mokrych. Różnice są jednak bardzo niewielkie – maksymalna różnica wynosi jedynie 0,3 punktu na stanowisku 6. W tym miejscu (część biologiczna SSSB) średnia wartość pH w okresach deszczowych wynosiła około 7,9, natomiast w okresach suchych 7,6.
Konduktywność wody w każdym z analizowanych przypadków początkowo maleje (z wartości około 200 μS/cm do 180 μS/cm), a po wpłynięciu do części sedymentacyjnej SSSB zaczyna dość gwałtownie rosnąć. Taka tendencja zachowana jest aż do stanowiska 5. (między przegrodą, a gabionem), w którym to niezależnie od warunków pogodowych osiąga swoje maksimum na poziomie 360 μS (dla okresów deszczowych) i 400 μS/cm (dla średniej ze wszystkich próbek i średniej z okresów wyłącznie suchych). Warto zauważyć dość wyraźne obniżenie wartości konduktywności w wodzie, następujące po przepłynięciu przez część biologiczną SSSB, czyli na stanowisku monitoringowym numer 6. W zależności od okresu (dni suche/deszczowe), to wartość konduktywności ulega tam zmniejszeniu w zakresie od 30 do 70 μS/cm w stosunku do poprzedniego stanowiska. Po wpłynięciu do Bzury wartość konduktywności niezależnie od warunków pogodowych ponownie wzrasta i ostatecznie ponownie osiąga poziom 370-400 μS/cm, wyrównując się ze średnią jej wartością w górnej części rzeki (stanowisko 8.).
4.2.3. Zawiesina

Szczegółowe wyniki analiz wskazują jednoznacznie, iż stężenia zawiesiny w analizowanych próbkach wody zarówno dla okresów deszczowych jak i bezdeszczowych pokrywają się ze średnim stężeniem tego parametru dla całego roku.

Rys. 8. – Porównanie średniego stężenia zawiesiny na przestrzeni całego okresu badań, do stężenia zawiesiny w okresach deszczowych

Rys. 9. – Porównanie średniego stężenia zawiesiny na przestrzeni całego okresu badań, do stężenia zawiesiny w okresach bezdeszczowych

Zawartość zawiesiny w toni wodnej ulega wyraźnej redukcji po przejściu już przez pierwsze elementy systemu. Maksymalna ilość materii zawieszonej w toni wodnej występuje zawsze na pierwszym z mierzonych stanowisk (1. dla okresów deszczowych, 2. dla pomiarów z okresów suchych). Na ulicy Wycieczkowej średnie stężenie tego parametru sięga wartości 240 mg/l, natomiast za separatorem podziemnym ulega redukcji do 120 mg/l. Najniższe wartości występują na stanowisku 5. w SSSB i są porównywalne do stężenia zawartego w rzece (stanowisko 8. – referencyjne), gdzie zarówno dla próbek z okresów deszczowych, jak i suchych, zmierzone wartości ilości zawiesiny wynosiły 10-15 mg/l. W stosunku do poprzedzających je stanowisk, na stanowiskach 4. i 6. (część sedimentacyjna SSSB i część biologiczna) niezależnie od warunków pogodowych można zaobserwować wzrost ilości niesionej materii o około 70-220% (o 15 mg/l na stanowisku 6. oraz o 25 mg/l na stanowisku 4.).

Za stanowiskiem 4. (powyżej przegrody) amplituda zmian stężeń w kolejnych punktach jest coraz mniejsza. Przyrosty skuteczności jej redukcji nie są już tak wyraźnie widoczne – jednak również występują. Sekwencyjny system sedimentacyjno-biofiltracyjny przyczynia się do redukcji zawiesiny z 240 mg/l (stanowisko 1.) do około 22 mg/l (stanowisko 6.) niezależnie od zmian intensywności opadu.
4.3. Dynamika zmian parametrów chemicznych wody w SSSB

4.3.1. Formy całkowite azotu i fosforu

Zmiany stężeń fosforu i azotu na poszczególnych stanowiskach wykazują zbliżone tendencje. Na stanowiskach na których maleje ilość azotu, przeważnie wyraźnie niższe są również wyniki dotyczące zawartości fosforu.

Analizując próbki pobrane na przestrzeni całego okresu badań można zauważyć, że zawartość azotu i fosforu w wodzie drastycznie spada wraz z przepływem przez kolejne elementy SSSB. Zarówno azot, jak i fosfor osiągają swoje najwyższe stężenia na stanowisku pierwszym – czyli na ulicy Wycieczkowej. Zawartość azotu wynosi tu średnio 5,7 mg/l, fosforu natomiast około 3,1 mg/l. Na stanowisku 2 (separator) obie grupy związków ulegają redukcji o około 64-67% (o 1 mg/l dla fosforu i o 2 mg/l dla azotu), aby następnie na stanowisku 3. (wlot do zbiornika) delikatnie wzrosnąć. Wyraźne obniżenie ich stężeń następuje w momencie opuszczania komory sedimentacyjnej – na stanowisku 4. Poziom osiąganej redukcji wynosi tutaj od 1,5 mg/l dla azotu, do 2 mg/l dla obu fosforu. W dalszej części SSSB...
ich stężenia w wodzie ulegają stabilizacji i kształtują się w okolicach 1,5 mg/l dla azotu i 0,8 mg/l dla fosforu. Oznacza to, że poprzez zastosowanie sekwencyjnego systemu sedymentacyjno-biofiltracyjnego udało się uzyskać redukcję stężenia azotu całkowitego z poziomu 5,8 mg/l (stanowisko początkowe) do 1,2 mg/l (stanowisko końcowe – 6.), natomiast fosfor zredukowano z 3,1 mg/l do 0,8 mg/l. Zebrane dane pokazują, że TN ulega więc redukcji do poziomu niższego, niż naturalnie występujący w rzce (1,6 mg/l na stanowisku 8.), natomiast stężenie TP wyrównuje się z poziomem stężenia z Bzury (0,8 mg/l na stanowisku 8.)

W próbkach z okresów deszczowych ogólna tendencja zmian stężeń zarówno TP, jak i TN jest zbliżona do zmian w próbkach z całego okresu monitoringowego. Najwyższe stężeń form całkowitych fosforu i azotu w okresach z deszczem odnotowywane są na stanowisku 1. (ulica Wycieczkowa) i wynoszą odpowiednio 3,1 mg/l oraz 5,6 mg/l. W kolejnych punktach monitoringowych ich wartości systematycznie maleją, aby swoje minima osiągnąć na ostatnim stanowisku SSSB – 6. (część biologiczna). Dla TP i TN wynoszą tam one odpowiednio 0,8 mg/l i 1,8 mg/l, co w obu przypadkach oznacza skuteczność redukcji bliską 75%. Dzięki zastosowaniu SSSB stężenia obu grup tych związków ulegają obniżeniu do poziomów naturalnie występujących w Bzurze (na stanowisku 8. stężenie TP w rzce równe jest 0,8 mg/l, TN natomiast 1,8 mg/l).

W przypadku okresów bezdeszczowych, amplituda zmian stężeń tych substancji jest wyraźnie mniejsza, niż w przypadku okresów deszczowych. Średnia z próbek z okresów suchych pokazuje, że najwyższe stężeń form całkowitych obu tych pierwiastków mogą być zaobserwowane na stanowisku numer dwa, w podziemnym separatorze. Różnica między maksimum, a minimum dla próbek z okresów suchych jest jednak stosunkowo niewielka. Na stanowisku 2. (stężenia są na nim najwyższe) średnie wartości TP wynoszą około 2,1 mg/l, natomiast dla TN około 2,0 mg/l. Dla stanowiska leżącego na końcu SSSB – 6., są one odpowiednio równe 0,7 mg/l i 1,1 mg/l. Stężenia obu tych substancji są więc zbliżone do wartości naturalnie występujące w rzce do której odprowadzane są podczyszczone wody SSSB (dla TP i TN na stanowisku 8. odpowiednio: 0,8 mg/l i 1,6 mg/l).
4.3.2. Fosforany, azotany i amon

Zebrane dane dowodzą, że sekwencyjny system sedymentacyjno-biofiltracyjny zlokalizowany przy ulicy Wycieczkowej wykazuje również wysoką skuteczność redukcji form jonowych substancji biogenicznych, tj.: azotany, fosforany i amon.

Rys. 11. – Zdjęcie przedstawia dopływ wód z SSSB do rzeki Bzury (fot. T. Jurczak). Wykresy prezentują średnie stężenia azotanów, fosforanów i amonu na przestrzeni: A – całego okresu badań; B – w okresach deszczowych; C – w okresach bezdeszczowych.

Analiza próbek z całego okresu badań wykazuje, że na obszarze tym jony amonowe ulegają redukcji średnio z około 0,5 mg/l (stanowisko 1.), do 0,2 mg/l (stanowisko 6.). W części biologicznej SSSB ich stężenia są dwukrotnie niższa niż w rzece (stanowisko 8. – 0,4 mg/l). Stężenia azotanów są natomiast redukowane już o około 50% pomiędzy stanowiskiem 1. (ulica Wycieczkowa), a 2. (separator). Ich zawartość w wodzie maleje tam z 1,6 mg/l do ok. 0,8 mg/l. Warto odnotować pojawiający się na stanowisku 3. ponowny ich wzrost, wynoszący około 53% (do 1,3 mg/l). Kolejne elementy SSSB skutecznie jednak obniżają ich zawartość w wodzie do około 0,4 mg/l na stanowisku 6. Wartość ta jest jedynie nieznacznie wyższa, od wartości naturalnie występujących w Bzurze (0,25 mg/l na stanowisku 8.). W przeciwieństwie do azotanów, fosforany wykazują wyraźny wzrost stężeń pomiędzy stanowiskiem pierwszym (ulica Wycieczkowa), a drugim (separator), który udaje się
znacznie ograniczyć już na stanowisku zlokalizowanym między przegrodą a gabionem (stanowisko 5.), a ich stężenia na końcowym odcinku SSSB (część biologiczna) są już równe stężeniom naturalnie występującym w rzece (0,4 mg/l w Bzurze poniżej ulicy Wycieczkowej).

W próbkach z okresów deszczowych ogólna tendencja zmian stężeń azotanów, fosforanów i amonu jest zbliżona do tej, która może być obserwowana w próbkach pobranych do badań z całego sezonu monitoringowego. Na stanowisku 2. (separator) w czasie deszczu ponownie pojawiają się stosunkowo wysokie wartości fosforanów, które sięgają nawet 1,5 mg/l (wzrost o prawie 300% w stosunku do stanowiska 1.). Na wlocie do zbiornika ich wartości ponownie ulegają obniżeniu, a na stanowisku 6. (część biologiczna) są już niższe, niż naturalnie występujące w rzece (w Bzurze wynoszą około 0,4 mg/l). Analizując próbki z okresów deszczowych widać, że stężenia amonu dzięki zastosowaniu SSSB ulegają obniżeniu z poziomu 0,5 mg/l (stanowisko 1. – ulica Wycieczkowa), do poziomu 0,3 mg/l (stanowisko 6. – część biologiczna SSSB). Oznacza to osiągnięcie wartości niższych, niż występujące naturalnie w Bzurze (0,4 mg/l na stanowisku 8.). W tym samym okresie stężenie azotanów, dzięki zastosowaniu systemu, uległo zmniejszeniu z poziomu 1,6 mg/l (stanowisko 1. – ulica Wycieczkowa), do poziomu 0,6 mg/l (stanowisko 6. - część biologiczna SSSB). Oznacza to, że w czasie opadów deszczu, wody podczyszczone przez system wciąż zawierają około dwukrotnie więcej azotanów, niż wynosi ich naturalny poziom w rzece (0,3 mg/l na stanowisku 8. – Bzura poniżej Wycieczkowej).

Analizując stężenia azotanów, fosforanów i amonu w próbkach z okresów bezdeszczowych widać wyraźnie, że amplituda ich zmian na kolejnych stanowiskach jest stosunkowo niewielka. W te dni poziom fosforanów ulegał zmniejszeniu z początkowej wartości 0,4 mg/l (stanowisko 2.), do końcowego poziomu bliskiego 0,3 mg/l w części biologicznej SSSB (stanowisko 6.). Taka sama jego wartość (0,3 mg/l) odczytywana była w okresach bezdeszczowych w Bzurze (stanowisko 8.). W dniach suchych niewielka była również amplituda zmian stężeń amonu. Zarówno w pierwszej części系统u (stanowisko 2.), jak i w końcowej części systemu (stanowisko 6.), stężenia tego związku były bliskie 0,3 mg/l. W analogicznym okresie jego wysokość w Bzurze (stanowisko 8.) sięgała 0,4 mg/l. W próbkach z okresów bezdeszczowych stężenia azotanów uległy zmniejszeniu z poziomu 0,7 mg/l (stanowisko 2.) do 0,3 mg/l (stanowisko 6.). Oznacza to, że woda po przepłynięciu przez SSSB wciąż posiadała stężenia azotanów nieznacznie wyższe, niż naturalnie występujące w rzece (0,2 mg/l na stanowisku 8.).
4.3.3. Wapń, potas i sód

Stężenia zarówno wapnia, jak i potasu, wykazują zbliżone tendencje zmian na analogicznych stanowiskach. Jeżeli na jednym ze stanowisk stężenie danego pierwiastka maleje, zmniejszeniu ulega również wartość drugiego z nich. Tendencji tej nie współdzieli sód, którego stężenia na kolejnych stanowiskach zmieniają się w odmienny sposób.

Analizując próbki z całego okresu badań widać wyraźnie, że najwyższe stężenie sodu odczytywane było na stanowisku 1. (ulica Wycieczkowa) i wynosiło w tym miejscu średnio 25 mg/l. Separator podziemny powodował obniżenie zawartości tego pierwiastka w wodzie do poziomu 10 mg/l. Zmiany na kolejnych stanowiskach są już bardzo niewielkie, a ich amplituda dla okresów w całym sezonie badawczym wynosi maksymalnie około 5 mg/l. W próbkach ze wszystkich wyjazdów monitoringowych, na końcowym stanowisku SSSB (6.) osiągane stężenie sodu zbliżało się do około 15 mg/l. Oznacza to, że stężenie tego pierwiastka na ostatnim stanowisku systemu pozostało nieznacznie wyższe, niż naturalnie występujące w rzce (11 mg/l na stanowisku zlokalizowanym poniżej ulicy Wycieczkowej). W przypadku wapnia, analiza próbek z całego okresu badań wykazuje,
że jego najniższe stężenia zostały zmierzone na stanowiskach początkowych. W trzech pierwszych punktach pomiarowych (ulica Wycieczkowa, separator podzienny i wlot do zbiornika) oscylują one pomiędzy 17 a 21 mg/l. Średnie stężenie tego pierwiastka ulega niewielkiemu obniżeniu pomiędzy stanowiskiem 5. (między przegrodą, a gabionem), a 6. (część biologiczna). Różnica poziomu stężeń na tym odcinku wynosi około 4 mg/l. Stężenie wapnia w wodzie wypływającej z SSSB (stanowisko 6.) jest wyraźnie niższe, niż wynosi ono w wodzie rzeki Bzury. Na stanowisku końcowym SSSB (część biologiczna) jego wartość zbliża się do 42 mg/l, natomiast w Bzurze poniżej Wycieczkowej (stanowisko 8.) kształtuję się ona na poziomie 56 mg/l. Podobny charakter zmian widoczny jest w przypadku potasu. Poddając analizie próbki z całego okresu badań, można zauważyć, że wartości jego stężeń na stanowiskach 1-3 są dość stabilne i zawierają się w przedziale od 2, do 2,5 mg/l. Na końcowym odcinku SSSB (stanowisko 6.) wartość stężenia potasu wzrasta do około 6 mg/l. Oznacza to, że poziom tego pierwiastka po przejściu przez SSSB pozostał niższy, niż naturalnie występujący w rzecznej (11 mg/l na stanowisku 8. – Bzura poniżej Wycieczkowej).

Podobne tendencje dotyczące potasu możemy zauważyć w próbkach z okresów deszczowych. W tym przypadku również następuje wzrost zawartości tego pierwiastka w wodzie na każdym kolejnym stanowisku badawczym, z wyłączeniem punktu pomiarowego numer 6. (część biologiczna). W tym miejscu następuje stabilizacja tego parametru na poziomie około 7 mg/l. Jest to wartość wyraźnie niższa, od wartości występującej w rzecznej Bzurze (13 mg/l na stanowisku 8.). Podobną tendencję w okresach deszczowych wykazuje wapń, którego stężenia na poszczególnych stanowiskach ulegają wzrostowi z poziomu 18 mg/l (stanowisko 1.), do 42 mg/l (stanowisko 6.). Wartość końcowa jest ponownie jednak niższa, niż naturalnie występująca w rzecznej Bzurze (60 mg/l na stanowisku 8.). W okresie deszczowym zmiany stężeń sodu na poszczególnych stanowiskach następują w sposób zbliżony do zmian zachodzących w próbkach z całego okresu badań. Jego końcowe stężenie osiąga wartość około 18 mg/l (stanowisko 6.) i jest nieznacznie wyższe, niż występujące w rzecznej (11 mg/l na stanowisku 8.).

Analiza próbek z okresów suchych wykazuje, że stężenia wszystkich trzech opisywanych pierwiastków na stanowisku końcowym (6. – część biologiczna) są bardzo zbliżone do tych, które osiągane były w ogóle analizowanych próbek. Średnie stężenia sodu, wapnia i potasu wynoszą w tym miejscu odpowiednio 12, 41 i 6 mg/l. Zarówno dla wapnia, jak i potasu są one niższe niż w rzecznej Bzurze poniżej Wycieczkowej. Odpowiednio dla wapnia i potasu wynoszą na stanowisku 8. (Bzura poniżej Wycieczkowej) 53 i 10 mg/l. Końcowe stężenie sodu, wynoszące 12 mg/l, jest jedynie nieznacznie wyższe, niż naturalnie występujące w Bzurze (11 mg/l).
4.3.4. Procentowe przyrosty skuteczności usuwania biogenów

Zamieszczona w dalszej części pracy tabela 3. prezentuje procentowy przyrost skuteczności w redukcji stężenia danego parametru w wodzie przepływającej przez poszczególne stanowiska monitoringowe, w stosunku do stężenia danej substancji na stanowisku początkowym. Najwyższe poziomy skuteczności w redukcji biogenów, udało się osiągnąć w przypadku zawiesiny. Już na wylocie wód burzowych z podziemnego systemu separatorów i osadników poziom redukcji zawiesiny wynosił 94,5% w stosunku do stężenia na ulicy Wycieczkowej. W przypadku dni bez opadu deszczu, wyraźnie wysoki poziom skuteczności osiągany był między przegrodą i gabionem (stanowisko 5.), gdzie ilość niesionej materii organicznej była o 86,8% niższa, niż na stanowisku 2. – przyjętym tu za punkt odniesienia. Próbki z całego okresu badań pokazują, że przy wykorzystaniu SSSB możliwe jest osiągnięcie redukcji zawiesiny na poziomie powyżej 90%. Różnica pomiędzy skutecznością w dni z opadami i bez opadów, wynosi na stanowiskach końcowych około 11,4% - na niekorzyść dni suchych. Zebrane dane pokazują, że zastosowanie SSSB pozwala zmniejszyć stężenie zawiesiny w wodach burzowych do poziomu stężeń naturalnie występujących w Bzurze (stanowisko 7. – poniżej SSSB i stanowisko 8. – Bzura poniżej Wycieczkowej).

Zgromadzone dane prezentują, że jeden z najniższych poziomów skuteczności SSSB wykazuje w przypadku redukcji ilości amonu. W próbkach z całego okresu badań średnia różnica pomiędzy stężeniem amonu na stanowisku nr 6 (część biologiczna SSSB), a stężeniem początkowym wynosi około 55%. Redukcja w dni deszczowe i bezdeszczowe wynosi odpowiednio 51,9% oraz 28,8%.
Tabela 3. Tabela porównująca przyrosty skuteczności redukcji [%] poszczególnych związków chemicznych w różnych okresach, na kolejnych stanowiskach.

<table>
<thead>
<tr>
<th>Stanowisko:</th>
<th>Redukcja TN</th>
<th>Redukcja TP</th>
<th>Redukcja Azotanów</th>
<th>Redukcja fosforanów</th>
<th>Redukcja amonu</th>
<th>Redukcja zawiesiny</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>średnio</td>
<td>deszcz</td>
<td>sucho</td>
<td>średnio</td>
<td>deszcz</td>
<td>sucho</td>
</tr>
<tr>
<td>Ulica Wycieczkowa (kratka)</td>
<td>0,0</td>
<td>0,0</td>
<td>brak*</td>
<td>0,0</td>
<td>0,0</td>
<td>brak*</td>
</tr>
<tr>
<td>Osadnik wirowy</td>
<td>34,3</td>
<td>21,9</td>
<td>0,0</td>
<td>31,1</td>
<td>31,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Wlot do zbiornika</td>
<td>27,4</td>
<td>27,4</td>
<td>brak*</td>
<td>21,2</td>
<td>21,2</td>
<td>brak*</td>
</tr>
<tr>
<td>Powyżej przegrody</td>
<td>64,5</td>
<td>35,9</td>
<td>32,9</td>
<td>71,4</td>
<td>65,7</td>
<td>61,7</td>
</tr>
<tr>
<td>Między przegrodą a gabionem</td>
<td>70,9</td>
<td>57,7</td>
<td>31,9</td>
<td>71,5</td>
<td>66,2</td>
<td>61,0</td>
</tr>
<tr>
<td>Część biologiczna SSSB</td>
<td>75,9</td>
<td>70,6</td>
<td>41,6</td>
<td>76,4</td>
<td>71,8</td>
<td>69,2</td>
</tr>
<tr>
<td>Poniżej SSSB</td>
<td>75,6</td>
<td>67,9</td>
<td>36,2</td>
<td>74,6</td>
<td>42,9</td>
<td>68,6</td>
</tr>
<tr>
<td>Bzura poniżej Wycieczk.</td>
<td>70,9</td>
<td>68,8</td>
<td>23,1</td>
<td>76,7</td>
<td>76,3</td>
<td>66,3</td>
</tr>
</tbody>
</table>

* - Z danych miejsc próbki nie były pobrane ze względu na niedostateczną ilość wody/inne problemy techniczne.
Bez względu na intensywność opadów SSSB wykazuje stosunkowo wyrównany poziom redukcji azotanów. W przypadku dni deszczowych wartość skuteczności w redukcji azotanów jest równa 64,2%, natomiast w dni suche wynosi ona 57,3%. Warto dodatkowo zauważyć dość wyraźny (ponad 20%) spadek w efektywności działania systemu pomiędzy separatorem, a wlotem do zbiornika.

Zebrane dane pokazują, że SSSB charakteryzuje się ciekawym zachowaniem dotyczącym redukcji fosforanów. Pomimo początkowego znaczącego wzrostu ich stężeń pomiędzy stanowiskami ulica Wycieczkowa i separator (wzrost zawartości fosforanów o ponad 150% w przypadku dni z opadem), udaje się ostatecznie uzyskać pozytywną redukcję ich stężeń, równą 38%. Zbliżony poziom redukcji stężeń fosforanów oznaczony został w próbkach z okresów bezdeszczowych, gdzie na stanowisku końcowym SSSB (stanowisko 6.), wynosi on ponad 35%. Oznacza to, że dzięki zastosowaniu SSSB udało się uzyskać stężenia fosforanów niższe, niż naturalnie występujące w tym samym czasie w Bzurze.

Sekwencyjny system sedymentacyjno-biofiltracyjny w Arturówku odznacza się również bardzo wyraźną redukcją stężeń fosforu i azotu całkowitego w przepływających przez niego wodach. W obu tych grupach substancji skuteczność różni się dość znacząco w przypadku próbek z dni deszczowych i suchych, jednak ciągle pozostaje na bardzo wysokim poziomie. Skuteczność usuwania azotu całkowitego w czasie dni mokrych sięga ponad 70%. W czasie dni bez opadu spada ona jednak do 41,6%. Dla wszystkich analizowanych próbek jest jeszcze wyższe niż w dni deszczowe i równa się wtedy prawie 76%. Tendencja wydaje się delikatnie różnić w przypadku fosforu całkowitego – w przeciwnieństwie do TN nie widać wyraźnych rozbieżności pomiędzy skutecznością SSSB dla dni suchych i deszczowych. W obu sytuacjach średnie stężenie form całkowitych tego pierwiastka oscyluje w okolicach 70%. Zarówno w przypadku TP, jak i TN, stężeń które udaje się uzyskać dzięki zastosowaniu SSSB są bardzo zbliżone do tych naturalnie występujących w Bzurze poniżej SSSB (stanowisko 7.) i w Bzurze na wysokości SSSB (stanowisko Bzura poniżej Wycieczkowej). Zarówno TP jak i TN, wykazują niewielki spadek poziomu redukcji zauważalny jest na wlocie do zbiornika (stanowisko 3.), w którym to punkcie skuteczność systemu spada o około 5-10%, jednak wciąż pozostaje dodatnia.

4.4. Dynamika rozwoju roślinności w części biologicznej SSSB

W ramach prowadzonych prac inwestycyjnych na SSSB dokonano dwóch tur nasadzeń roślinności – pierwszej w 2013 roku w trakcie trwających prac inwestycyjnych, a drugiej w kwietniu roku 2014 podczas wykonywania dodatkowych prac optymalizacyjnych. Wykonano inwentaryzację znajdującej się na tym obszarze roślinności, która miała na celu ocenę efektywności prowadzonych działań oraz

Tabela 4. Tabela prezentująca efekty inwentaryzacji roślin w części biologicznej SSSB (Król, 2014 zmienione).

<table>
<thead>
<tr>
<th>Numer</th>
<th>Gatunek</th>
<th>Liczba sadzonek na stanowisku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2013 r.</td>
</tr>
<tr>
<td>1</td>
<td>Pałka szerokolistna</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Pałka wąskolistna</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Manna mielec</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Mozga trzcinowata</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Kosaciec żółty</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Oczeret jeziorny</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Trzcina pospolita</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>Turzyca błotna</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Turzyca brzegowa</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Turzyca nibyciborowata</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Krwawnica pospolita</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>Żabiściek pływający</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>Rdestnica pływająca</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>Rogatek sztywny</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>Turzyca dzióbkowata</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>Żabieniec babka wodna</td>
<td>1</td>
</tr>
<tr>
<td>RAZEM NA STANOWISKU</td>
<td>526</td>
<td>275</td>
</tr>
</tbody>
</table>

W roku 2014 na odpływie z części biologicznej zainstalowana została niewielka pływająca wyspa, której rolą jest doczyszczanie wypływającej z systemu wody. Ponieważ nieustannie unosi się ona na powierzchni wody, to nagłe wezbrania nie są dla niej tak groźne. Rozwijające się na niej rośliny w czasie opadu nie ulegają zalaniu, a ich systemy korzeniowe wciąż pozostają zanurzone w wodzie.
5. **DYSKUSJA**

Jak potwierdzają liczne badania (Wnuk 2010, Ulężałka 2011, Podawca 2012), jednym z kluczowych czynników powodujących znaczny wzrost trofii zbiorników w Arturówku jest spływ wód burzowych z obszaru zlewni bezpośrednio do zbiorników w Arturówku oraz pośrednio wraz z wodami rzeki Bzury, która jest również odbiornikiem zanieczyszczonych wód deszczowych z ulicy Wycieczkowej. Zanieczyszczona woda dostawała się bezpośrednio do Bzury i dalej zanieczyszczenia transportowane były do zbiorników w Arturówku. Jej zła jakość powodowała w efekcie toksyczne, sinicowe zakwity, które przyczyniały się do wyłączania zbiorników z użytkowania rekreacyjnego (Jurczak i inni, 2007).

W ramach programu LIFE+ „Ekohydrologiczna rekultywacja zbiorników rekreacyjnych „Arturówek” (Łódź) jako modelowe podejście do rekultywacji zbiorników miejskich” podjęto działania m.in. ograniczające dopływ zanieczyszczeń do tych akwenów, co w konsekwencji powinno przełożyć się na znacznie lepszą jakość wody. Jednym z takich rozwiązań było stworzenie poniżej ulicy Wycieczkowej sekwencyjnego systemu sedymentacyjno-biofiltracyjnego, którego rolą było retencjonowanie spływających drogą wód oraz ich wstępne podczyszczenie. Celem niniejszej pracy magisterskiej było oszacowanie efektywności tego rozwiązania, określenie możliwych zagrożeń dla jego funkcjonowania oraz sprawdzenie różnic w zachowaniach systemu w okresach suchych i deszczowych.

INNOWACYJNE PODEJŚCIE DO WYZWAŃ

Jak podaje w swojej pracy Zalewski (2002), innowacyjność podejścia ekohydrologicznego do prób rozwiązania problemów zlewni zurbanizowanych polega na łączeniu rozwiązań inżynieryjnych z biologicznymi. Na terenach śródmiejskich, z uwagi na ograniczoną przestrzeń ciężko jest wkomponować w istniejącą infrastrukturę miasta, np. strefy buforowe zajmujące duże powierzchnie. W celu osiągnięcia zamierzonego efektu należy więc wykorzystywać elementy istniejących już systemów oraz wspierać ich potencjalne możliwości samooczyszczania.

Koncepcja sekwencyjnego systemu sedymentacyjno-biofiltracyjnego opiera się na wielu wcześniej już sprawnikowych rozwiązaniach. Między innymi już w 1996 roku Tanner eksperymentalnie potwierdził, że wykorzystując rośliny można zredukować stężenia TP i TN w wodzie o blisko 90%. Według innych natomiast badań (Maine i inni, 2009) wykazano, że zastosowanie odpowiednich gatunków roślin może w pewnych sytuacjach umożliwić obniżenie konduktywności z poziomu 2803 µS/cm do 1372 µS/cm. Wyzwanie polega jednak na tym, aby na obszarach zurbanizowanych zbliżoną skuteczność osiągnąć przy jednoczesnym zajęciu jak najmniejszej powierzchni. Prowadzone w ramach niniejszej pracy działania potwierdzają, że zastosowanie sekwencyjnego systemu sedymentacyjno biofiltracyjnego, jako rozwiązania integrującego kilka różnych technik, może na to
pozwolić. W przypadku SSSB przy ulicy Wycieczkowej redukcja form całkowitych wyniosła średnio 76,4% dla TP oraz 75,9% dla TN.

Rys. 13. – Zdjęcia prezentujące funkcjonujący system. A – część biologiczna SSSB; B – część sedimentacyjna SSSB; C – część geochemiczna SSSB; D – materia zatrzywana przed gabionem (fot. T. Jurczak)

Zbliżony system do tego wykorzystanego przy ulicy Wycieczkowej został już wcześniej skutecznie wdrożony na rzece Sokołówce, w ramach inwestycji opisanej przez Wagner i Krauze (2014). Projekt tam realizowany uwzględniał jednak jedynie trzy strefy, na obszarze których zachodziło oczyszczanie przepływającej wody: strefę intensywnej sedimentacji, strefę procesów geochemicznych i strefę biofiltracyjną. Innowacyjność SSSB skonstruowanego poniżej ulicy Wycieczkowej polega na integracji elementów zastosowanych wcześniej na Sokołówce, z systemem podziemnych separatorów i osadników. Swoją funkcję spełniać miały one w założeniu poprzez wychwytywanie spływających spowodowań oraz eliminację zawartych w niej substancji ropopochodnych i zawiesiny. Zebrane wyniki potwierdzają, że udało się osiągnąć zakładowane rezultaty (redukcja zawiesiny sięga już za separatorem 94,5%).

Zalewski i inni (2012) określili, że system zastosowany wcześniej na rzece Sokołówce pozwolił na osiągnięcie skuteczności w redukcji fosforu i azotu całkowitego na poziomie około 60%. Zebrane w ramach niniejszej pracy dane pozwalają przypuszczać, że SSSB skonstruowany w ramach projektu
LIFE+ przy ulicy Wycieczkowej charakteryzuje się jeszcze wyższą skutecznością, która średnio dla TP i TN sięga ponad 75%. Prawdopodobną przyczyną różnicy skuteczności pomiędzy tymi dwoma systemami może być właśnie część podziemna SSSB w Arturówku, która w tym rozwiązaniu jest elementem nowatorskim. To co jednak łączy oba te projekty, to nienagany wygląd i idealne wkomponowanie w otoczenie.

WARUNKI POGODOWE

Kim i inni w roku 2007 przeprowadzili w mieście Daejeon badania, polegające na próbie skorelowania ilości zanieczyszczeń zawartych w spływie wód burzowych, z ilością dni suchych poprzedzających opad. Zauważyli oni, że po 13 dniach pogody bezdeszczowej spływ zawierał średnio 19,5 mg/l fosforu oraz 20,3 mg/l azotu całkowitego. Odnotowali również, że po krótszym okresie bezdeszczowym wynoszącym 6 dni, stężenia TP i TN w wodzie burzowej były niższe i wynosiły odpowiednio 7,1 mg/l oraz 13,8 mg/l. Wartości te potwierdzają zależność zaobserwowaną również w przypadku ulicy Wycieczkowej, że wraz ze wzrostem ilości dni suchych poprzedzających dany opad rośnie również stężenie biogenów spływających ulicą Wycieczkową.

Na podstawie zebranych danych niewątpliwie można wysnuć wniosek, że skuteczność SSSB powiązana jest bezpośrednio z pogodą (ilością opadów) występującą w czasie trwania badań.
Zaobserwowano, że parametry wody przepływającej przez poszczególne stanowiska monitoringowe w dni ze wzmożonym opadem i wodą płynącą ulicą Wycieczkową bardzo często dość wyraźnie różnią się od parametrów wody na analogicznych stanowiskach w okresach suchych. Zauważono również zależność, że wraz ze wzrostem ilości dni suchych poprzedzających opad, rośnie również stężenie biogenów dostających się do SSSB z powierzchni ulicy Wycieczkowej w momencie kiedy opad już nastąpi.

PARAMETRY FIZYCZNE

Według analiz przeprowadzonych przez Carr i Neary (2008), w przeważającej części zbiorników wodnych na kuli Ziemskiej pH waży się w przedziale od 7,5 do 8. Sekwencyjny system sedymentacyjno-biofiltracyjny nie jest tu wyjątkiem. Zebrane dane wyraźnie pokazują, że wartości pH na obszarze SSSB przeważnie oscylują w ciągu roku w okolicach 7,7. Minimalny poziom odnotowywany był zwykle między przegrodą, a gabionem i wynosił tam przeciętnie 7,4. Ta wartość nie ma jednak negatywnego wpływu na funkcjonowanie systemu i wciąż pozostaje na pełni akceptowalnym poziomie. Badania prowadzone w przeszłości przez Maximovich’a i Khayrulin’a (2014) potwierdzają, że tak stabilny poziom tego parametru może być powiązany ze stosunkowo dużą ilością dolomitów i wapieni znajdujących się na terenie SSSB, które ze względu na swój odczyn wpływają stabilizującą na wartość pH.

W przypadku tlenu zauważalną tendencją jest drastyczne obniżanie się wartości tego parametru pomiędzy stanowiskiem 3. i 5., gdzie jego wartość spada z poziomu 9 mg/l, do poziomu 4,5 mg/l. Po wpłynięciu do Bzury wartość rozpuszczonego tlenu ponownie wzrasta. Taki stan rzeczy przypuszczalnie wynika z wyraźnej stagnacji wody w okolicach części sedymentacyjnej SSSB. Analizy przeprowadzone przez Kajaka (1998) udowadniają, że w wodzie która zwalnia, automatycznie maleje ilość rozpuszczonego w niej tlenu. Jego stężenie wzrasta, kiedy woda podlega turbulencji i wzburzeniu – czyli w dalszym odcinku rzeki Bzury.

Niezbędnym odnotowaniem jest również fakt niebywałej redukcji stężeń zawiesiny w przepływającej przez system wody. Ma on miejsce jeszcze przed jej wpłynięciem do sekwencyjnego systemu sedymentacyjno-biofiltracyjnego, czyli w części podziemnej systemów separatorów i osadników. System ten redukuje stężenie zawiesiny średnio o 54% już w pierwszym podziemnym osadniku wirowym, a całości procesu dopełnia kolejne z urządzeń podziemnych – separator lamelowy, ponizej którego (odpływ do SSSB) ilość niesionej materii organicznej, w stosunku do stanowiska początkowego, ulega obniżeniu o 81,5%. Ostatecznie, po przejściu przez cały system osiągany poziom redukcji wynosi około 93,5% i bliski jest stężeniom naturalnie występującym w Bzurze. Tak duża redukcja zawiesiny już na etapie osadników pozwala dodatkowo na znaczne obniżenie ilości TP i TN.
Podobne zależności zaobserwowali w swoich badaniach Putz i Bendorf (1998), którzy podkreślają jednak, że wydajność zachodzących procesów sedymentacji w dużej mierze zależy od odpowiednich parametrów zbiornika (optymalny rozmiar i głębokość). W analizowanych przez nich zbiornikach ograniczenie ilości niesionej w toni wodnej zawiesiny pozwoliło na obniżenie stężeń TP od 34 do 64%. Osad, który nie został skutecznie zatrzymany przed wprowadzeniem do SSSB na etapie separatorów i osadników był skutecznie zatrzymywany w części biologicznej, która jest większa powierzchniowo. Jednocześnie rośliny, które tam występują, stanowią bardzo efektywną barierę dla transportu zawiesiny. Podobną zależność zauważył w swoich badaniach DeBusk z zespołem (2005), który poprzez zastosowanie pływających wysp z roślinnością zmniejszył zawartość zawiesiny w toni wodnej o 67%.

Warto również zwrócić uwagę na fakt bardzo niewielkiej korelacji pomiędzy pogodą (ilością opadu), a ilością niesionej przez wodę zawiesiny. Taki stan prawdopodobnie wynika z faktu, że zawiesina ze względu na swój ciężar stosunkowo powoli ulega przemieszczaniu przez SSSB. Maksymalne spowolnienie przepływu zawiesiny przez SSSB było jednym z założeń konstrukcyjnych systemu. W efekcie różnice w jej ilości w próbach z okresów deszczowych i suchych w poszczególnych częściach systemu nie były zauważalne.

PARAMETRY CHEMICZNE

W przypadku stężeń TP i TN, najwyższy skok przyrostu skuteczności SSSB uzyskuje w częściach sedymentacyjnych (po przejściu przez podziemny system separatorów). Stężenia tych biogenów ulegają tam redukcji do poziomów naturalnie występujących w Bzurze poniżej systemu. Taki stan rzeczy związany jest prawdopodobnie z faktem, że w tym miejscu następuje również największa redukcja zawiesiny. Pozbywając się jej (zawiesina ulega tu sedymentacji), pozbywamy się jednocześnie dużej części form całkowitych azotu i fosforu (Kajak, 1998). Badania prowadzone w przeszłości przez Jacobsena i innych (1994) wykazały, że aż około 80% fosforu w danym zbiorniku mogło dostać się do niego wraz z zawiesiną. W przypadku próbek obejmujących wszystkie dni monitoringowe, a także wyłącznie dni z opadami udało się uzyskać redukcję stężeń azotu całkowitego z poziomu 5,8 mg/l do poziomu 1,3 mg/l. Analogiczne wartości dla fosforu całkowitego wynoszą 3,1 oraz 0,8 mg/l.

Warto zauważyć, że dużo mniejsza amplituda zmian występuje w grupie próbek pobieranych w okresach bezdeszczowych. Prawdopodobną przyczyną takiego stanu rzeczy jest fakt, że w te dni niższe są stężenia początkowe. Stosunkowo łatwo jest zredukować TP i TN do poziomu około 0,8-1,5 mg/l (co udało się w obu przypadkach), ciężko jest natomiast zejść poniżej pewnej granicy – co potwierdzają badania prowadzone przez Cameron’a i Schipper’a (2010).
W przypadku wapnia i potasu, zarówno w warunkach deszczowych jak i suchych, może zostać zaobserwowana ciekawa tendencja. Sekwencyjny system sedymantacyjno-biofiltracyjny powoduje, że wraz z przepływem wody przez jego kolejne części, stężenia rozpuszczonych w wodzie jonów wapniowych i potasowych ulegają wzrostowi. Początkowa zawartość obu tych grup pierwiastków oscyluje w okolicach 17-21 mg/l, końcowa natomiast dochodzi do 42 mg/l (na stanowisku 6.).

Tego typu wzrost wiąże się prawdopodobnie z dość dużą ilością wapnia i dolomitu wykorzystanego między innymi w części geochemicznej SSSB. Skład skał użytych do jej stworzenia opiera się w dużej mierze właśnie na wapni i potasie (Mant i inni, 2013). Jak pokazują liczne badania, rozwiązania wykorzystujące dolomity i wapnie są w stanie w skuteczny sposób podnieść pH przepływającej cieczy z poziomu 2,9, nawet do poziomu 7,2. Tego typu technologie były poddawane analizie w trakcie wielu doświadczeń terenowych prowadzonych pod kierunkiem Maximovich’a (Maximovich i Blinov, 1994; Maximovich i Khayrulina, 2014;). Dokonywane na terenie SSSB badania potwierdzają, że pH wody nie uległo jednak drastycznemu podniesieniu i przez cały rok, w każdej części systemu kształtowało się na zbliżonym poziomie, wynoszącym około 7,7 – który jest w pełni bezpieczny i naturalny dla wód tego typu (Carr i Neary, 2008). Złoża dolomitowe zastosowane na obszarze SSSB spełniły natomiast swoją rolę i w skuteczny sposób zredukowały ilość przepływających przez nie biogenów. Podobne rezultaty otrzymały w swoich badaniach Westholm (2006), który doświadczalnie potwierdził wysoką skuteczność wapnia w redukowaniu stężeń fosforu całkowitego.

Funkcjonowanie SSSB umożliwiło dodatkowo znaczną redukcję azotanów i fosforanów, których stężenia po przepłynięciu przez system były bliskie stężeń naturalnie występujących w Bzurze. W przypadku okresów deszczowych osiągnięto obniżenie poziomu jonów azotanowych z poziomu 1,5 mg/l (stanowisko: ulica Wycieczkowa) do poziomu około 0,4 mg/l. W przypadku dni suchych ich poziom spadł z 0,7 mg/l do 0,4 mg/l. Mniejsza amplituda zmian wiąże się prawdopodobnie z podobnymi przyczynami, jak w przypadku TP i TN – stosunkowo łatwo jest obniżyć stężenia tych związków do pewnego poziomu, lecz niezwykle ciężko jest sprowadzić je do zera. Podobna tendencja została zaobserwowana w przypadku jonów fosforanowych, gdzie ich zawartość w wodzie również udało się zredukować do poziomu bliskiego 0,4 mg/l zarówno w warunkach suchych, jak i deszczowych. Bardzo wysokie stężenia fosforanów obserwowane wewnątrz podziemnych separatorów wiąza się prawdopodobnie z gromadzeniem się w nich materii organicznej. Badania prowadzone przez Adenipekun i Dada (2013) pokazują, że rozkład martwej materii i zachodzenie procesów gnilnych może sprzyjać tworzeniu się fosforanów. Zastosowane podziemne zbiorniki sedymantacyjne wykazały się bardzo wysoką skutecznością i efektywnie wychwytywały dostającą się do nich materię, która następnie ulegała rozkładowi na ich obszarze. Tak wysoki poziom stężeń fosforanów na terenie podziemnych separatorów może wynikać również z
bardzo wydajnego wychwytywania i gromadzenia przez zbiorniki zanieczyszczeń pochodzących z pobliskich działek i ogródków, na obszarze których wykorzystywane są prawdopodobnie różnego rodzaju nawozy i detergenty. Teoretycznie możliwe jest, by substancje te mogły przedostawać się do SSSB wraz z wodami gruntowymi.

WYZWANIA I ZAGROŻENIA

W toku prowadzonych prac monitoringowych na terenie SSSB poczyniono wiele spostrzeżeń, które w przyszłości mogą poprawić funkcjonowanie podobnych systemów sedymentacyjno-biofiltracyjnych. Zauważono kilka aspektów, które w określonych sytuacjach mogą obniżyć wydajność całego projektu. Ich kontrolowanie i ograniczanie jest jednak możliwe poprzez uważny monitoring stanu SSSB. Duża część zagrożeń, które mogą się pojawić, wystąpi bowiem jedynie w sytuacji niedostatecznej ilości podejmowanych działań nadzorczych.

Rys. 14. – Stan wód w SSSB po: A – niewielkim opadzie deszczu; B – intensywnym opadzie deszczu (fot. T. Jurczak)

Rośliny przybrzeżne przykrywane są przez toń wodną – co może prowadzić do ich gnicia i problemów z ukształtowaniem systemu korzeniowego. Nawet tak ekspansywne gatunki jak trzcina pospolita
wykazywały się zmniejszaniem populacji, a te którym udało się przetrwać nie były bardzo dobrze wykształcone. Warto jednak zauważyć, że znalazły się również gatunki, które potrafiły rozwijać się w tak trudnych warunkach i na przestrzeni mijającego czasu znacznie zwiększyły swoją liczebność. Znacznej ekspansji dokonał: kosaciec żółty, żabiściek pływający, rdestnic a, manna mielec i turzyca brzegowa. W przypadku innych gatunków niezbędne były znaczne dosadzenia, opisane w odpowiednim podrozdziale niniejszej pracy.

W swoim cyklu doświadczeń Tanner (1996) udowadnia, że skuteczność prowadzonych działań rekultywacyjnych opartych na prawidłowo dobranych makrofitach może być olbrzymia. Poziom redukcji osiągnięty przez uprawiane w jego eksperymentie rośliny w stosunku do azotu całkowitego był bliski 92%, fosforu 93%, zawiesina uległa zaś obniżeniu aż o 88%. Część biologiczna SSSB w połączeniu z poprzedzającymi ją elementami systemu pozwoliła na zapewnienie redukcji azotu całkowitego o 75,9%, a fosforu o 76,4%. Stężenie zawiesiny było zaś w tej części SSSB niższe o 90% w stosunku do stężenia zawiesiny na ulicy i było bliskie wartości występującej naturalnie w Bzurze poniżej SSSB.

Warto również zwrócić uwagę, że aby zmaksymalizować skuteczność funkcjonowania części biologicznej SSSB, makrofity należy regularnie przycinać. Ze względu na fakt, że duża część ich efektywności opiera się na magazynowaniu szkodliwych substancji wewnątrz tkanek, kluczowym jest, aby ich ścięte fragmenty były usuwane i nie pozostawały na obszarze SSSB. W swoim doświadczeniu terenowym Liuming i inni (2010) udowodnili, że poprzez wycinkę 2,9 tony roślinności nabrzeżnej możliwe jest usunięcie 62,4 kg TN i 10,4 kg TP.

Badania prowadzone przez Borin i Salvato (2012) potwierdzają, że duża część roślin magazynuje pobrane biogeny w swoich tkankach nadziemnych. W analizowanych przez nich przypadkach, zależnie od gatunku rośliny było to od 51 do 83% całości pobranych przez roślinę związków. Taka tendencja pokazuje ogromny potencjał tkwiący w ich regularnym przycinaniu i wywożeniu ściętych fragmentów. Konieczność regularnej wycinki wiąże się oczywiście z generowaniem kosztów i wymogiem regularnego monitoringu stanu roślinności. Wysokość tego typu opłat jest jednak nieproporcjonalnie niższa, niż ilość zagrożeń związanych z zanieczyszczonymi zbiornikami. W toku prowadzonych prac roślinność na terenie SSSB była regularnie wycinana. Wysokie poziomy
skuteczności części biologicznej SSSB pokazują, że było to działanie słusznne i odniosło zamierzony efekt.

Kolejnym z wyzwań dotyczących eksploatacji SSSB, jest gromadzenie się w nim znacznych ilości materii organicznej. Regularne monitoringi potwierdzają, że zarówno w podziemnym systemie separatorów i osadników, jak i w części sedymentacyjnej SSSB, gromadzą się znaczne ilości liści, gałęzi i innych fragmentów martwych roślin. Prowadzi to między innymi do znacznego podniesienia stężeń fosforanów wewnątrz separatorów. W typowych warunkach SSSB w pełni spełnia swoje zadanie i poszczególne jego podsystemy skutecznie powstrzymują materię organiczną przed uwalnianiem z obszaru SSSB i przedostaniem się do Bzury. W toku prowadzonych działań zaobserwowano jednak, że w sytuacji wzmożonych opadów deszczu, kiedy w wyniku intensywnego spływu powierzchniowego pojawia się nagła fala wezbraniowa, duża ilość materii zakumulowanej na terenie systemu zostaje z niego wypchnięta i potrafi przedostać się do kolejnych elementów systemu, a w konsekwencji nawet przedostać się do rzeki Bzury. Aby temu zapobiec, kluczowe jest regularne konserwowanie SSSB i opróżnianie go ze zgromadzonej w nim materii organicznej. Zebrane w ramach realizacji projektu EH-REK dane pokazują, że wybranie z części osadnikowej SSSB zaledwie 1 m³ osadu, pozwala na usunięcie 5,25 kg azotu oraz 0,76 kg fosforu.

Regularne oczyszczanie z nagromadzonej materii jest szczególnie istotne w przypadku zwłaszcza trzech fragmentów systemu: podziemnych separatorów, powierzchniowego zbiornika sedymentacyjnego oraz metalowej kraty okrytej matą filtracyjną. To właśnie te elementy, ze względu na pełnione przez nie funkcje są w największym stopniu narażone na gromadzenie się na nich materii, która potencjalnie w sytuacji wzmożonych opadów może zostać wypchnięta i w konsekwencji może spowodować nadmierny wzrost stężeń biogenów w dalszej części systemu i ekosystemów wodnych które zasilane są wodami SSSB.

Powyższe doświadczenia świadczą o tym, że wszystkie części SSSB opierające swoje działanie na zjawisku sedymentacji należy w regularnych odstępach czasu (co najmniej dwukrotnie w ciągu roku – wiosną i późną jesienią) opróżniać i wybierać nagromadzoną w nich materię. System został
zaprojektowany w taki sposób, aby proces ten maksymalnie ułatwić. Jednym z zastosowanych udogodnień jest przystosowanie brzegu zbiornika sedymentacyjnego do poruszania się po nim ciężkiego sprzętu. W tym celu fragment SSSB został wyłożony specjalnie zaprojektowanymi płytami.

Wyniki podobnych inwestycji pokazują, że w regularnych odstępach czasu należy również wymieniać matę filtracyjną (co najmniej raz w roku, bezpośrednio po oczyszczeniu części sedymentacyjnej SSSB), która okrywa metalową kratę. Zebrane dane pokazują, że dzięki jej zastosowaniu średnia ilość zawiesiny niesionej w wodzie uległa obniżeniu o około 13%, średnia ilość azotanów została natomiast zredukowana o 28,9% w stosunku do poprzedzającego ją stanowiska. Jak podaje w swoich pracach Burszta-Adamia (2005), mata filtracyjna jest materiałem, który aby zachować pełną skuteczność nie może ulec kolmatacji. Działanie tego typu nie jest kosztowne, wymaga jednak podjęcia pewnych okresowych działań ze strony podmiotu sprawującego pieczę nad SSSB. Obserwacje prowadzone na obszarze SSSB przy ulicy Wycieczkowej potwierdzają tezę stawianą przez Bursztę-Adamia (2005), że geowłóknina stosunkowo szybko ulega naturalnemu zużyciu i po pewnym czasie przestaje spełniać swoją funkcję.

Zaniechanie któregokolwiek z wymienionych w niniejszym podrozdziale czynności może doprowadzić do wzbijania się wysedmentowanego osadu ponownie do toni wodnej, a w efekcie może przyczynić się do kolmatacji złoża dolomitowego znajdującego się za separatorem. To z kolei może w znacznym stopniu obniżyć efektywność systemu. Taką zależność potwierdzają liczne doświadczenia terenowe (Bursztę-Adamia, 2005; Mant i inni, 2013).

Aby nie zniweczyć wysiłków służących stworzeniu całego systemu i aby zapewnić jego dalsze wydajne działanie, należy regularnie monitorować stan SSSB i w razie potrzeby bez zbędnej zwłoki podejmować niezbędne czynności, mające na celu ograniczenie zagrożeń dotyczących jego funkcjonowania.

Całkowity koszt inwestycji przy ulicy Wycieczkowej podsumowany został na kwotę równą 274 855 zł. Wliczają się w nią koszty stworzenia systemu zbierającego wodę z ulicy Wycieczkowej (kratki w ulicy, kanalizacja), studnia przelewowa, osadnik wirowy, separator lamelowy, studnia wyrównawcza, oraz cała część naziemna SSSB o łącznej powierzchni 300 m². W tabeli 6. zestawiono i porównano koszty poszczególnych rozwiązań wykonanych w Arturówku w roku 2013 w ramach projektu LIFE+.
SSSB skonstruowany poniżej ulicy Wycieczkowej nie jest jedynym, który został stworzony w ramach projektu realizowanego w Arturówku. Oprócz niego utworzonych zostało pięć innych systemów, w innych fragmentach rekultywowanego obszaru. Wspólnym celem ich funkcjonowania jest poprawa jakości wody w zbiornikach Arturówka. Różnice w kosztach poszczególnych systemów wynikają z ich odmiennych parametrów i rozmiarów.

Roczny koszt eksploatacji SSSB poniżej ulicy Wycieczkowej został oszacowany na około 3600 zł. Eksploatacja obejmuje czynności, których wykonanie jest niezbędne do właściwego funkcjonowania systemu: podcinanie roślin, wybieranie przydennego osadu, wymiana maty filtracyjnej oraz oczyszczanie podziemnych separatorów. Sumaryczny koszt wydaje się jednak niski w stosunku do uzyskiwanych efektów, a zaniechanie którejkolwiek z wymienionych czynności, może doprowadzić do spadku wydajności pracy sekwencyjnego systemu sedymentacyjno-biofiltracyjnego, a w przypadkach skrajnych, przy braku prac eksploatacyjnych przez kilka sezonów, może on stać się źródłem potężnych zanieczyszczeń wprowadzanych do systemu rzecznego. W stosunku do typowych prac rekultywacyjnych, polegających na odmuleniu zbiornika, koszt konstrukcji SSSB przy ulicy Wycieczkowej jest nieznaczny. Opłata za wybranie osadów ze zbiorników w Arturówku wyniosła ponad 414 tysięcy złotych. Za tę samą sumę sekwencyjny system sedymentacyjno-biofiltracyjny mógłby wydajnie funkcjonować i gwarantować możliwość rekreacyjnego wykorzystania zbiorników miejskich przez kolejne 115 lat (przy założeniu kosztu 3600 zł/rok).

<table>
<thead>
<tr>
<th>Lokalizacja</th>
<th>Całkowity koszt inwestycji w danej lokalizacji [zł]</th>
<th>Składowe całkowitego kosztu inwestycji w danej lokalizacji</th>
<th>Powierzchnia SSSB w danej lokalizacji [m²]</th>
<th>Roczny koszt eksploatacji wybranego SSSB [zł]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>26 218,29</td>
<td>urządzenie podczyszczające (1 szt.), przegroda gabionowa, strefa roślinna</td>
<td>150</td>
<td>450</td>
</tr>
<tr>
<td>AŚ</td>
<td>67 404,14</td>
<td>urządzenie podczyszczające (1+2 szt.), przegroda gabionowa, strefa roślinna</td>
<td>120</td>
<td>900</td>
</tr>
<tr>
<td>AG</td>
<td>141 874,31</td>
<td>strefa sedymentacyjna wraz z przegroda gabionowa, zjazd techniczny, usypianie grobli, strefa roślinna na grobli</td>
<td>750</td>
<td>1800</td>
</tr>
<tr>
<td>Wycieczkowa</td>
<td>274 855,21</td>
<td>urządzenie podczyszczające (1+2+1 szt), przegroda gabionowa, strefa roślinna</td>
<td>300</td>
<td>3600</td>
</tr>
<tr>
<td>Zbiornik B17</td>
<td>74 453,38</td>
<td>strefa sedymentacyjna wraz z przegroda gabionowa, usypianie grobli, strefa roślinna na grobli, modyfikacja jazu</td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>Zbiornik B7</td>
<td>71 644,13</td>
<td>strefa sedymentacyjna wraz z przegroda gabionowa, strefa roślinna, modyfikacja jazu</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Odmulanie - AD, AŚ, AG, W, B17, B7+B7a+B8</td>
<td>414 751,55</td>
<td>12200 m² z powierzchni łącznej zbiorników 7,5 ha</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wyspa</td>
<td>191 880,00</td>
<td>powierzchnia 100 m²</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SUMA</td>
<td>1 263 081,00</td>
<td>-</td>
<td>1680</td>
<td>7150</td>
</tr>
</tbody>
</table>

Tabela 6. Koszt instalacji i eksploatacji Sekwencyjnego Systemu Sedymentacyjno-Biofiltracyjnego (SSSB) na tle kosztu mechanicznego odmulania zbiorników i konstrukcji pływającej wyspy.
6. **WNIOSKI**

a) SSSB wykazuje wysoki poziom skuteczności w podczyszczaniu przepływających przez niego wód burzowych. Wartość skuteczności wynosi średnio 76,4% dla TP, 75,9% dla TN oraz 90,0% dla zawiesiny. Pomimo faktu, że woda początkowo charakteryzuje się kilkukrotnie wyższymi stężeniami biogenów od występujących naturalnie, to SSSB pozwala na obniżenie ich wartości do poziomu stężeń typowych dla Bzury.

b) Skuteczność działania SSSB zmienia się wraz ze zmieniającymi się warunkami pogodowymi. W przypadku okresów suchych poziom osiąganej redukcji stężeń większości substancji jest niższy, niż w okresach deszczowych. Za przykład służyć mogą stężeń azotanów, których poziom redukcji w dni deszczowe wynosi około 64,2%, zaś w bezdeszczowe około 57,3%.

c) Podziemny system separatorów i osadników w związku z gromadzeniem się w nich materii organicznej i zachodzeniem procesów gnilnych wykazuje tendencję do podnoszenia stężeń fosforanów w wodzie, która się do nich dostaje.

d) Stężenia TP i TN na wylocie z podziemnych separatorów mogą okresowo wzrastać, w związku ze spadkiem skuteczności zatrzymywania zawiesiny przez system separatorów i osadników w wyniku nagromadzonej w nich materii.

e) Zagrożeniem dla funkcjonowania systemu może być w przyszłości ewentualny brak jego regularnej konserwacji (podcinanie roślin, wybieranie przydennego osadu, wymiana geowłókniny, oczyszczanie podziemnych separatorów). Aby zachować pełnię skuteczności, należy regularnie podejmować wysiłki zmierzające ku maksymalizacji wydajności systemu.

f) Bardzo intensywne opady, przy jednoczesnym braku konserwacji SSSB, mogą powodować wypłukiwanie zgromadzonej w nim materii organicznej i wprowadzenie jej do dalszych elementów ekosystemu. Zarówno część sedymentacyjna SSSB, jak i podziemny system separatorów, posiadają ograniczoną pojemność (w przypadku podziemnego separatora jest to w przybliżeniu 82 cm miąższości zawiesiny (około 3,4 m³)). Regularne oczyszczanie systemu pozwala uniknąć tego zagrożenia.

g) Duże zanieczyszczenie wód na obszarze objętym działaniem systemu, gwałtowne wahania poziomu wody i mała ilość światła utrudniają rozwój roślin na terenie SSSB.
7. STRESZCZENIE PRACY MAGISTERSKIEJ

Ocena skuteczności sekwencyjnego systemu sedymentacyjno-biofiltracyjnego w oczyszczaniu wód burzowych

Evaluation of the effectiveness of sedimentation-biofiltration sequential system in storm water treatment

Wody deszczowe na obszarach zurbanizowanych nie mogą swobodnie infiltrować w grunt ze względu na jego szczelne pokrycie asfaltem, betonem i innymi powierzchniami nieprzepuszczalnymi. W efekcie w czasie opadu bardzo często następuje wzmocniony spływ powierzchniowy, który może wiązać się z niebezpiecznymi dla środowiska konsekwencjami. Wody burzowe spływając z terenów miejskich zbierają z nich wszystkie nagromadzone zanieczyszczenia, które następnie trafiają do studzieneń kanalizacyjnych i zbiorników miejskich. Zjawisko to może przyczyniać się do wzrostu trofii zbiorników, a w efekcie powodować między innymi toksyczne, sinicowe zakwity. Wiele skutecznych rozwiązań tego problemu proponuje ekohydrologia, która dzięki integracji rozwiązań inżynieryjnych z biologicznymi może być wykorzystywana nawet na obszarach o bardzo ograniczonej powierzchni. Przykładem biotecnologii ekologicznej służącej podczyszczaniu wód burzowych z terenów zurbanizowanych jest sekwencyjny system sedymentacyjno-biofiltracyjny (SSSB).

Celem pracy było zaprezentowanie opisu działania modelowego SSSB na przykładzie systemu skonstruowanego na rzece Bzurze poniżej ulicy Wycieczkowej, zbadanie poziomu skuteczności jego poszczególnych elementów oraz określenie wpływu intensywnych opadów deszczu na efektywność i wydajność pracy całego systemu. Rolą niniejszej pracy było również scharakteryzowanie ewentualnych problemów, zagrożeń i wyzwań, które mogą pojawić się w związku z funkcjonowaniem SSSB.

Pobory próbek analizowanych w ramach niniejszej pracy dokonywane były pomiędzy marcem i listopadem roku 2014. Odbywały się one minimalnie dwukrotnie w ciągu każdego z miesięcy. Dodatkowe wyjazdy monitoringowe wykonywane były w momencie pojawienia się intensywnych opadów deszczu. Próbki pobierane były z pięciu stanowisk znajdujących się na obszarze SSSB, jednego znajdującego się na ulicy Wycieczkowej oraz dwóch leżących na rzece Bzurze.

Uzyskane wyniki wskazują, że SSSB wykazuje wysoki poziom skuteczności w podczyszczaniu przepływających nim wód burzowych. Pomimo faktu, że woda początkowo charakteryzowała się kilkukrotnie wyższymi stężeniami biogenów od występujących naturalnie, to zastosowanie SSSB pozwoliło na obniżenie ich poziomu do stężeń typowych dla Bzury. Zebrane dane ukazują również, że wydajność działania SSSB ulega zmianie wraz ze zmieniającymi się warunkami pogodowymi. Zagadnieniem, na które należy zwrócić uwagę przy kolejnych tego typu inwestycjach jest konieczność regularnej konserwacji systemu – polegająca na wybieraniu zgromadzonego w SSSB osadu, podcinaniu roślinności oraz wymianie geowłókniny okrywającej przegrodę.
8. LITERATURA

Bonisławski R., (2008), Rzeki Bzura i Łagiewniczanka, Z biegiem łódzkich riek, UM Łodzi.

Burszta-Adamiak E., (2007), Ocena przydatności geowłóknin do ochrony gruntu przed kolmatacją, Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, z. 3 (37), s. 90-98.

Hurley S., Forman R., (2011), Stormwater ponds and biofilters for large urban sites: Modeled arrangements that achieve the phosphorus reduction target for Boston’s Charles River, USA. Ecological Engineering 37, 850-863.

Kardel I., Piniewski M., (2015), Adaptacja modelu matematycznego zlewni zbiorników Arturówek z uwzględnieniem efektywności zastosowanych w projekcie rozwiązań ograniczających zakwity sinic w zbiornikach, Zakład Hydrologii i Zasobów Wodnych, Katedra Inżynierii Wodnej SGGW.

Krół B., (2014), Inwentaryzacja nasadzeń roślinnych w ramach projektu EH-REK LIFE08ENV/PL/000517: „Ekohydrologiczna rekultywacja zbiorników rekreacyjnych „Arturówek” (Łódź) jako modelowe podejście do rekultywacji zbiorników miejskich”.

Wagner I., Krauze, K., (2014), Jak bezpiecznie zatrzymać wodę opadową w mieście? Zrównoważony Rozwój — Zastosowania, 5, s. 75-95.

Symposium in Lodz – Ecohydrology, Biotechnology and Engineering: Towards the Harmony between Biogosphere and Society on the basis of Long Term Ecosystem Research.